commit() method may be used to commit pending updates on the local patref
object:
hlua_patref flags were added:
HLUA_PATREF_FL_GEN means the patref object has been updated
and it is associated to a new revision (curr_gen) in order to prepare
and commit the pending updates.
upon commit, the pattern API is leveraged with curr_gen as revision to
commit new object items. Once commit is performed, previous (pending)
revisions that are older than the committed one are cleaned up (similar
to what's done with commit on the cli). Also, Patref function APIs now
take into account curr_gen to perform lookups.
pat_ref_may_commit() may be used to know if a given generation ID id still
valid, which means it may still be committed at some point. Else it means
that another pending generation ID older than the tested one was already
committed and thus other generations ID below this one are stale and must
be regenerated.
In order to extend the patref class features, let's wrap the pat_ref struct
into hlua_patref struct. This way we may add additional data alongside the
pat_ref pointer to store additional context required for pat_ref data
manipulation from lua.
Since the wrapper (hlua_patref) is an allocated object, we declare the _gc
metamethod for patref class in order to properly cleanup resources when
they are out of scope.
patref object may now leverage index and pair methamethods to list and
access patref elements at a specific index (=key)
Also, patref:is_map() method may be used to know if the patref stores acl
(key only) or map-style (key:value) patterns.
Implement patref class to expose pat_ref struct internal pattern struct
in lua. This is some prerequisite work needed to be able to manipulate
exisiting generic pattern object lists (acl/map) from Lua, because the Map
class can only be used to perform matching ops on Map files.
Now that PAT_REF events were defined in previous commit, let's actually
publish them from pattern API where relevant. Unlike server events,
pattern reference events are only published in the pat_ref subscriber's
list on purpose, because in some setups patref updates (updates performed
on a map for instance from action or cli) are very frequent, and we don't
want to impact pattern API performance just for that.
Moreover, as the main use case is to be able to subscribe to maps updates
from Lua, allowing a per-pattern reference registration is already enough.
No additional data is provided for such events (also for performance reason)
Care was taken not to publish events when the update doesn't affect the
live subset (the one targeted by curr_gen).
This is some prerequisite work for implementing PAT_REF events.
In this commit we define the PAT_REF event_hdl family (which gets family
slot id #2), with the following supported events:
- EVENT_HDL_SUB_PAT_REF_ADD: element was added to the current version of
the pattern ref
- EVENT_HDL_SUB_PAT_REF_DEL: element was deleted from the current
version of the pattern ref
- EVENT_HDL_SUB_PAT_REF_SET: element was modified in the current version
of the pattern ref
- EVENT_HDL_SUB_PAT_REF_COMMIT: pending element(s) was/were commited in
the current version of the pattern ref
- EVENT_HDL_SUB_PAT_REF_CLEAR: all elements were cleared from the
current version of the pattern ref
The goal is to be able to track a pat_ref struct in order to be notified
when it is updated. For performance reasons, events from this family won't
provide any additional info, and will only be published in the pat_ref
subscription list. Indeed, pat_ref may be updated at a relatively high
frequency (or worse, batch work), so we cannot afford doing expensive
treatment for each update.
This patch fixes the loss of information when computing the delivery rate
(quic_cc_drs.c) on links with very low latency due to usage of 32bits
variables with the millisecond as precision.
Initialize the quic_conn task with TASK_F_WANTS_TIME flag ask it to ask
the scheduler to update the call date of this task. This allows this task to get
a nanosecond resolution on the call date calling task_mono_time(). This is enabled
only for congestion control algorithms with delivery rate estimation support
(BBR only at this time).
Store the send date with nanosecond precision of each TX packet into
->time_sent_ns new quic_tx_packet struct member to store the date a packet was
sent in nanoseconds thanks to task_mono_time().
Make use of this new timestamp by the delivery rate estimation algorithm (quic_cc_drs.c).
Rename current ->time_sent member from quic_tx_packet struct to ->time_sent_ms to
distinguish the unit used by this variable (millisecond) and update the code which
uses this variable. The logic found in quic_loss.c is not modified at all.
Must be backported to 3.1.
The "421" status can now be specified on retry-on directives. PR_RE_* flags
were updated to remains sorted.
This patch should fix the issue #2794. It is quite simple so it may safely
be backported to 3.1 if necessary.
pat_ref_gen_delete(ref, gen_id, key) tries to delete all samples belonging
to <gen_id> and matching <key> under <ref>
The goal is to be able to target a single subset from <ref>
pat_ref_gen_find_elt(ref, gen_id, key) tries to find <elt> element
belonging to <gen_id> and matching <key> in <ref> reference.
The goal is to be able to target a single subset from <ref>
pat_ref_gen_set(ref, gen_id, value, err) modifies to <value> the sample
of all patterns matching <key> and belonging to <gen_id> (generation id)
under <ref>
The goal is to be able to target a single subset from <ref>
split pat_ref_set() function in 2 distinct functions. Indeed, since
0844bed7d3 ("MEDIUM: map/acl: Improve pat_ref_set() efficiency (for
"set-map", "add-acl" action perfs)"), pat_ref_set() prototype was updated
to include an extra <elt> argument. But the logic behind is not explicit
because the function will not only try to set <elt>, but also its
duplicate (unlike pat_ref_set_elt() which only tries to update <elt>).
Thus, to make it clearer and better distinguish between the key-based
lookup version and the elt-based one, restotre pat_ref_set() previous
prototype and add a dedicated pat_ref_set_elt_duplicate() that takes
<elt> as argument and tries to update <elt> and all duplicates.
A UDP datagram cannot be greater than 65535 bytes, as UDP length header
field is encoded on 2 bytes. As such, sendmsg() will reject a bigger
input with error EMSGSIZE. By default, this does not cause any issue as
QUIC datagrams are limited to 1.252 bytes and sent individually.
However, with GSO support, value bigger than 1.252 bytes are specified
on sendmsg(). If using a bufsize equal to or greater than 65535, syscall
could reject the input buffer with EMSGSIZE. As this value is not
expected, the connection is immediately closed by haproxy and the
transfer is interrupted.
This bug can easily reproduced by requesting a large object on loopback
interface and using a bufsize of 65535 bytes. In fact, the limit is
slightly less than 65535, as extra room is also needed for IP + UDP
headers.
Fix this by reducing the count of datagrams encoded in a single GSO
invokation via qc_prep_pkts(). Previously, it was set to 64 as specified
by man 7 udp. However, with 1252 datagrams, this is still too many.
Reduce it to a value of 52. Input to sendmsg will thus be restricted to
at most 65.104 bytes if last datagram is full.
If there is still data available for encoding in qc_prep_pkts(), they
will be written in a separate batch of datagrams. qc_send_ppkts() will
then loop over the whole QUIC Tx buffer and call sendmsg() for each
series of at most 52 datagrams.
This does not need to be backported.
Let's move mworker_reexec() and mworker_reload() in mworker.c. mworker_reload()
is called only within the functions, which are already in mworker.c. So, this
reorganization allows to declare mworker_reload() as a static.
mworker_run_master() is called only in master mode. mworker_loop() is static
and called only in mworker_run_master(). So let's move these both functions in
mworker.c.
We also need here to make run_thread_poll_loop() accessible from other units,
as it's used in mworker_loop().
mworker_prepare_master() performs some preparation routines for the new worker
process, which will be forked during the startup. It's called only in
master-worker mode, so let's move it in mworker.c.
mworker_on_new_child_failure() performs some routines for the worker process,
if it has failed the reload. As it's called only in mworker_catch_sigchld()
from mworker.c, let's move mworker_on_new_child_failure() in mworker.c as well.
Like this it could also be declared as a static.
This patch prepares the moving of on_new_child_failure definition into
mworker.c. So, let's rename it accordingly and let's also update its
description.
QUIC pacing was recently implemented to limit burst and improve overall
bandwidth. This is used only for MUX STREAM emission. Pacing requires
nanosecond resolution. As such, it used now_cpu_time() which relies on
clock_gettime() syscall.
The usage of clock_gettime() has several drawbacks :
* it is a syscall and thus requires a context-switch which may hurt
performance
* it is not be available on all systems
* timestamp is retrieved multiple times during a single task execution,
thus yielding different values which may tamper pacing calculation
Improve this by using task_mono_time() instead. This returns task call
time from the scheduler thread context. It requires the flag
TASK_F_WANTS_TIME on QUIC MUX tasklet to force the scheduler to update
call time with now_mono_time(). This solves every limitations listed
above :
* syscall invokation is only performed once before tasklet execution,
thus reducing context-switch impact
* on non compatible system, a millisecond timer is used as a fallback
which should ensure that pacing works decently for them
* timer value is now guaranteed to be fixed duing task execution
In the memprofile summary per DSO, we currently have to pay a high price
by calling dladdr() on each symbol when doing the summary per DSO at the
end, while we're not interested in these details, we just want the DSO
name which can be made cheaper to obtain, and easier to manipulate. So
let's create resolve_dso_name() to only extract minimal information from
an address. At the moment it still uses dladdr() though it avoids all the
extra expensive work, and will further be able to leverage the same
mechanism as "show libs" to instantly spot DSO from address ranges.
Some dependencies might very well rely on posix_memalign(), strndup()
or other less portable callsn making us miss them when chasing memory
leaks, resulting in negative global allocation counters. Let's provide
the handlers for the following functions:
strndup() // _POSIX_C_SOURCE >= 200809L || glibc >= 2.10
valloc() // _BSD_SOURCE || _XOPEN_SOURCE>=500 || glibc >= 2.12
aligned_alloc() // _ISOC11_SOURCE
posix_memalign() // _POSIX_C_SOURCE >= 200112L
memalign() // obsolete
pvalloc() // obsolete
This time we don't fail if they're not found, we just silently forward
the calls.
Some memory profiling outputs have showed negative counters, very likely
due to some libs calling strdup(). Let's add it to the list of monitored
activities.
Actually even haproxy itself uses some. Having "profiling.memory on" in
the config reveals 35 call places.
In "show profiling memory", we need to distinguish methods which really
free memory from those which do not so that we don't account for the
free value twice. However for now it's done using multiple tests, which
are going to complicate the addition of new methods. Let's switch to a
bit field defined as a mask in a single place instead, as we don't
intend to use more than 32/64 methods!
There's actually a problem with memprofiles: the pool pointer is stored
in ->info but some pools are replaced during startup, such as the trash
pool, leaving a dangling pointer there.
Let's complete the API with a new function memprof_remove_stale_info()
that will remove all stale references to this info pointer. It's also
present when USE_MEMORY_PROFILING is not set so as to ease the job on
callers.
Let's store progname in the global variable, as it is handy to use it in
different parts of code to format messages sent to stdout.
This reduces the number of arguments, which we should pass to some functions.
This commit prepares the usage of the global progname variable.
prepare_caps_from_permitted_set() use progname value in warning messages. So,
let's rename program_name argument to progname.
The ->app_limited member of the delivery rate struct (quic_cc_drs) aim is to
store the index of the last transmitted byte marked as application-limited
so that to track the application-limited phases. During these phases,
BBR must ignore delivery rate samples to properly estimate the delivery rate.
Without such a patch, the Startup phase could be exited very quickly with
a very low estimated bottleneck bandwidth. This had a very bad impact
on little objects with download times smaller than the expected Startup phase
duration. For such objects, with enough bandwith, BBR should stay in the Startup
state.
No need to be backported, as BBR is implemented in the current developement version.
Extend extra pacing support for newreno and nocc congestion algorithms,
as with cubic.
For better extensibility of cc algo definition, define a new flags field
in quic_cc_algo structure. For now, the only value is
QUIC_CC_ALGO_FL_OPT_PACING which is set if pacing support can be
optionally activated. Both cubic, newreno and nocc now supports this.
This new flag is then reused by QUIC config parser. If set, extra
quic-cc-algo burst parameter is taken into account. If positive, this
will activate pacing support on top of the congestion algorithm. As with
cubic previously, pacing is only supported if running under experimental
mode.
Only BBR is not flagged with this new value as pacing is directly
builtin in the algorithm and cannot be turn off. Furthermore, BBR
calculates automatically its value for maximum burst. As such, any
quic-cc-algo burst argument used with BBR is still ignored with a
warning.
This only concerns functions emitting warnings about misplaced tcp-request
rules. The direction is now specified in the functions name. For instance
"warnif_misplaced_tcp_conn" is replaced by "warnif_misplaced_tcp_req_conn".
In warnings about misplaced rules, only the first keyword is mentionned. It
works well for http-request or quic-initial rules for instance. But it is a
bit confusing for tcp-request rules, because the layer is missing (session
or content).
To make it a bit systematic (and genric), the second argument can now be
provided. It can be set to NULL if there is no layer or scope. But
otherwise, it may be specified and it will be reported in the warning.
So the following snippet:
tcp-request content reject if FALSE
tcp-request session reject if FALSE
tcp-request connection reject if FALSE
Will now emit the following warnings:
a 'tcp-request session' rule placed after a 'tcp-request content' rule will still be processed before.
a 'tcp-request connection' rule placed after a 'tcp-request session' rule will still be processed before.
This patch should fix the issue #2596.
qc_packet_loss_lookup() aim is to detect the packet losses. This is this function
which must called ->on_pkt_lost() BBR specific callback. It also set
<bytes_lost> passed parameter to the total number of bytes detected as lost upon
an ACK frame receipt for its caller.
Modify qc_release_lost_pkts() to call ->congestion_event() with the send time
from the newest packet detected as lost.
Modify qc_release_lost_pkts() to call ->slow_start() callback only if define
by the congestion control algorithm. This is not the case for BBR.
Add several callbacks to quic_cc_algo struct which are only called by BBR.
->get_drs() may be used to retrieve the delivery rate sampling information
from an congestion algorithm struct (quic_cc).
->on_transmit() must be called before sending any packet a QUIC sender.
->on_ack_rcvd() must be called after having received an ACK.
->on_pkt_lost() must be called after having detected a packet loss.
->congestion_event() must be called after any congestion event detection
Modify quic_cc.c to call ->event only if defined. This is not the case
for BBR.
Implement the version 3 of BBR for QUIC specified by the IETF in this draft:
https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/
Here is an extract from the Abstract part to sum up the the capabilities of BBR:
BBR ("Bottleneck Bandwidth and Round-trip propagation time") uses recent
measurements of a transport connection's delivery rate, round-trip time, and
packet loss rate to build an explicit model of the network path. BBR then uses
this model to control both how fast it sends data and the maximum volume of data
it allows in flight in the network at any time. Relative to loss-based congestion
control algorithms such as Reno [RFC5681] or CUBIC [RFC9438], BBR offers
substantially higher throughput for bottlenecks with shallow buffers or random
losses, and substantially lower queueing delays for bottlenecks with deep buffers
(avoiding "bufferbloat"). BBR can be implemented in any transport protocol that
supports packet-delivery acknowledgment. Thus far, open source implementations
are available for TCP [RFC9293] and QUIC [RFC9000].
In haproxy, this implementation is considered as still experimental. It depends
on the newly implemented pacing feature.
BBR was asked in GH #2516 by @KazuyaKanemura, @osevan and @kennyZ96.
Implement the Kathleen Nichols' algorithm used by several congestion control
algorithm implementation (TCP/BBR in Linux kernel, QUIC/BBR in quiche) to track
the maximum value of a data type during a fixe time interval.
In this implementation, counters which are periodically reset are used in place
of timestamps.
Only the max part has been implemented.
(see lib/minmax.c implemenation for Linux kernel).
Add ->initial_wnd new member to quic_cc_path struct to keep the initial value
of the congestion window. This member is initialized as soon as a QUIC connection
is allocated. This modification is required for BBR congestion control algorithm.
Once in a while we find some makefiles ignoring some outdated arguments
and just emit a warning. What's annoying is that if users (say, distro
packagers), have purposely added ERR=1 to their build scripts to make
sure to fail on any warning, these ones will be ignored and the build
can continue with invalid or missing options.
William rightfully suggested that ERR=1 should also catch make's warnings
so this patch implements this, by creating a new "complain" variable that
points either to "error" or "warning" depending on $(ERR), and that is
used to send the messages using $(call $(complain),...). This does the
job right at little effort (tested from GNU make 3.82 to 4.3).
Note that for this purpose the ERR declaration was upped in the makefile
so that it appears before the new errors.mk file is included.
tasklet_wakeup_on() and its derivates (tasklet_wakeup_after() and
tasklet_wakeup()) do not support passing a wakeup cause like
task_wakeup(). This is essentially due to an API limitation cause by
the fact that for a very long time the only reason for waking up was
to process pending I/O. But with the growing complexity of mux tasks,
it is becoming important to be able to skip certain heavy processing
when not strictly needed.
One possibility is to permit the caller of tasklet_wakeup() to pass
flags like task_wakeup(). Instead of going with a complex naming scheme,
let's simply make the flags optional and be zero when not specified. This
means that tasklet_wakeup_on() now takes either 2 or 3 args, and that the
third one is the optional flags to be passed to the callee. Eligible flags
are essentially the non-persistent ones (TASK_F_UEVT* and TASK_WOKEN_*)
which are cleared when the tasklet is executed. This way the handler
will find them in its <state> argument and will be able to distinguish
various causes for the call.
Everything in the tasklet layer supports flags, except that they are
just not implemented in the wakeup functions, while they are in the
task_wakeup functions. Initially it was not considered useful to pass
wakeup causes because these were essentially I/O, but with the growing
number of I/O handlers having to deal with various types of operations
(typically cheap I/O notifications on subscribe vs heavy parsing on
application-level wakeups), it would be nice to start to make this
distinction possible.
This commit extends _tasklet_wakeup_on() and _tasklet_wakeup_after()
to pass a set of flags that continues to be set as zero. For now this
changes nothing, but new functions will come.
Currently tasks being profiled have th_ctx->sched_call_date set to the
current nanosecond in monotonic time. But there's no other way to have
this, despite the scheduler being capable of it. Let's just declare a
new task flag, TASK_F_WANTS_TIME, that makes the scheduler take the time
just before calling the handler. This way, a task that needs nanosecond
resolution on the call date will be able to be called with an up-to-date
date without having to abuse now_mono_time() if not needed. In addition,
if CLOCK_MONOTONIC is not supported (now_mono_time() always returns 0),
the date is set to the most recently known now_ns, which is guaranteed
to be atomic and is only updated once per poll loop.
This date can be more conveniently retrieved using task_mono_time().
This can be useful, e.g. for pacing. The code was slightly adjusted so
as to merge the common parts between the profiling case and this one.
We used to store it in 32-bits since we'd only use it for latency and CPU
usage calculation but usages will evolve so let's not truncate the value
anymore. Now we store the full 64 bits. Note that this doesn't even
increase the storage size due to alignment. The 3 usage places were
verified to still be valid (most were already cast to 32 bits anyway).
To improve debugging, extend "show quic" output to report if pacing is
activated on a connection. Two values will be displayed for pacing :
* a new counter paced_sent_ctr is defined in QCC structure. It will be
incremented each time an emission is interrupted due to pacing.
* pacing engine now saves the number of datagrams sent in the last paced
emission. This will be helpful to ensure burst parameter is valid.
Define a new QUIC congestion algorithm token 'cubic-pacing' for
quic-cc-algo bind keyword. This is identical to default cubic
implementation, except that pacing is used for STREAM frames emission.
This algorithm supports an extra argument to specify a burst size. This
is stored into a new bind_conf member named quic_pacing_burst which can
be reuse to initialize quic path.
Pacing support is still considered experimental. As such, 'cubic-pacing'
can only be used with expose-experimental-directives set.
Support pacing emission for STREAM frames at the QUIC MUX layer. This is
implemented by adding a quic_pacer engine into QCC structure.
The main changes have been written into qcc_io_send(). It now
differentiates cases when some frames have been rejected by transport
layer. This can occur as previously due to congestion or FD buffer full,
which requires subscribing on transport layer. The new case is when
emission has been interrupted due to pacing timing. In this case, QUIC
MUX I/O tasklet is rescheduled to run with the flag TASK_F_USR1.
On tasklet execution, if TASK_F_USR1 is set, all standard processing for
emission and reception is skipped. Instead, a new function
qcc_purge_sending() is called. Its purpose is to retry emission with the
saved STREAM frames list. Either all remaining frames can now be send,
subscribe is done on transport error or tasklet must be rescheduled for
pacing purging.
In the meantime, if tasklet is rescheduled due to other conditions,
TASK_F_USR1 is reset. This will trigger a full regeneration of STREAM
frames. In this case, pacing expiration must be check before calling
qcc_send_frames() to ensure emission is now allowed.
QUIC MUX will be responsible to drive emission with pacing. This will be
implemented via setting TASK_F_USR1 before I/O tasklet wakeup. To
prepare this, encapsulate each I/O tasklet wakeup into a new function
qcc_wakeup().
This commit is purely refactoring prior to pacing implementation into
QUIC MUX.
For STREAM emission, MUX QUIC previously used a local list defined under
qcc_io_send(). This was suitable as either all frames were sent, or
emission must be interrupted due to transport congestion or fatal error.
In the latter case, the list was emptied anyway and a new frame list was
built on future qcc_io_send() invokation.
For pacing, MUX QUIC may have to save the frame list if pacing should be
applied across emission. This is necessary to avoid to unnecessarily
rebuilt stream frame list between each paced emission. To support this,
STREAM list is now stored as a member of QCC structure.
Ensure frame list is always deleted, even on QCC release, using newly
defined utility function qcc_tx_frms_free().
qc_send_mux() has been extended previously to support pacing emission.
This will ensure that no more than one datagram will be emitted during
each invokation. However, to achieve better performance, it may be
necessary to emit a batch of several datagrams one one turn.
A so-called burst value can be specified by the user in the
configuration. However, some congestion control algos may defined their
owned dynamic value. As such, a new CC callback pacing_burst is defined.
quic_cc_default_pacing_burst() can be used for algo without pacing
interaction, such as cubic. It will returns a static value based on user
selected configuration.
Pacing will be implemented for STREAM frames emission. As such,
qc_send_mux() API has been extended to add an argument to a quic_pacer
engine.
If non NULL, engine will be used to pace emission. In short, no more
than one datagram will be emitted for each qc_send_mux() invokation.
Pacer is then notified about the emission and a timer for a future
emission is calculated. qc_send_mux() will return PACING error value, to
inform QUIC MUX layer that it will be responsible to retry emission
after some delay.
Extend quic_pacer engine to support pacing emission. Several functions
are defined.
* quic_pacing_sent_done() to notify engine about an emission of one or
several datagrams
* quic_pacing_expired() to check if emission should be delayed or can be
conducted immediately
This commit is part of a adjustment on QUIC transport send API to
support pacing. Here, qc_send_mux() return type has been changed to use
a new enum quic_tx_err.
This is useful to explain different failure causes of emission. For now,
only two values have been defined : NONE and FATAL. When pacing will be
implemented, a new value would be added to specify that emission was
interrupted on pacing. This won't be a fatal error as this allows to
retry emission but not immediately.
Extend QUIC transport emission function to support a maximum datagram
argument. The purpose is to ensure that qc_send() won't emit more than
the specified value, unless it is 0 which is considered as unlimited.
In qc_prep_pkts(), a counter of built datagram has been added to support
this. The packet building loop is interrupted if it reaches a specified
maximum value. Also, its return value has been changed to the number of
prepared datagrams. This is reused by qc_send() to interrupt its work if
a specified max datagram argument value is reached over one or several
iteration of prepared/sent datagrams.
This change is necessary to support pacing emission. Note that ideally,
the total length in bytes of emitted datagrams should be taken into
account instead of the raw number of datagrams. However, for a first
implementation, it was deemed easier to implement it with the latter.
Add QCC QC_CF_WAIT_FOR_HS and QCS QC_SF_TXBUB_OOB flags to their
respective show_flags to be able to decipher them via dev flags utility.
These values have been added in the current dev version, thus no need to
backport this patch.
When the request is too large to fit in a buffer a 414 or a 431 error
message is returned depending on the error state of the request parser. A
414 is returned if the URI is too long, otherwise a 431 is returned.
This patch should fix the issue #1309.
414-Uri-Too-Long and 431-Request-Header-Fields-Too-Large are now part of
supported status codes that can be define as error files. The hash table
defined in http_get_status_idx() was updated accordingly.
It is now possible to use a log-format string to define the "Set-Cookie"
header value of a response generated by a redirect rule. There is no special
check on the result format and it is not possible during the configuration
parsing. It is proably not a big deal because already existing "set-cookie"
and "clear-cookie" options don't perform any check.
Here is an example:
http-request redirect location https://someurl.com/ set-cookie haproxy="%[var(txn.var)]"
This patch should fix the issue #1784.
On prefix-based redirect, there is an option to drop the query-string of the
location. Here it is the opposite. an option is added to preserve the
query-string of the original URI for a localtion-based redirect.
By setting "keep-query" option, for a location-based redirect only, the
query-string of the original URI is appended to the location. If there is no
query-string, nothing is added (no empty '?'). If there is already a
non-empty query-string on the localtion, the original one is appended with
'&' separator.
This patch should fix issue #2728.
parse_size_err() currently is a function working only on an uint. It's
not convenient for certain elements such as rings on large machines.
This commit addresses this by having one function for uints and one
for ullong, and making parse_size_err() a macro that automatically
calls one or the other. It also has the benefit of automatically
supporting compatible types (long, size_t etc).
From time to time we face a configuration with very small timeouts which
look accidental because there could be expectations that they're expressed
in seconds and not milliseconds.
This commit adds a check for non-nul unitless values smaller than 100
and emits a warning suggesting to append an explicit unit if that was
the intent.
Only the common timeouts, the server check intervals and the resolvers
hold and timeout values were covered for now. All the code needs to be
manually reviewed to verify if it supports emitting warnings.
This may break some configs using "zero-warning", but greps in existing
configs indicate that these are extremely rare and solely intentionally
done during tests. At least even if a user leaves that after a test, it
will be more obvious when reading 10ms that something's probably not
correct.
Till now this value was parsed as raw integer using atol() and would
silently ignore any trailing suffix, causing unexpected behaviors when
set, e.g. to "4k". Let's make use of parse_size_err() on it so that
units are supported. This requires to turn it to uint as well, which
was verified to be OK.
Till now this value was parsed as raw integer using atol() and would
silently ignore any trailing suffix, preventing from starting when set
e.g. to "64k". Let's make use of parse_size_err() on it so that units are
supported. This requires to turn it to uint as well, and to explicitly
limit its range to INT_MAX - 2*sizeof(void*), which was previously
partially handled as part of the sign check.
Till now this value was parsed as raw integer using atol() and would
silently ignore any trailing suffix, causing unexpected behaviors when
set, e.g. to "512k". Let's make use of parse_size_err() on it so that
units are supported. This requires to turn it to uint as well, and
since it's sometimes compared to an int, we limit its range to
0..INT_MAX.
Till now this value was parsed as raw integer using atol() and would
silently ignore any trailing suffix, causing unexpected behaviors when
set, e.g. to "512k". Let's make use of parse_size_err() on it so that
units are supported. This requires to turn it to uint as well, which
was verified to be OK.
Till now these values were parsed as raw integer using atol() and would
silently ignore any trailing suffix, causing unexpected behaviors when
set, e.g. to "512k". Let's make use of parse_size_err() on them so that
units are supported. This requires to turn them to uint as well, which
is OK.
Till now these values were parsed as raw integer using atol() and would
silently ignore any trailing suffix, causing unexpected behaviors when
set, e.g. to "512k". Let's make use of parse_size_err() on them so that
units are supported. This requires to turn them to uint as well, which
is OK.
The qcc_report_glitch() function is now replaced with a macro to support
enumerating counters for each individual glitch line. For now this adds
36 such counters. The macro supports an optional description, though that
is not being used for now.
As a reminder, this requires to build with -DDEBUG_GLITCHES=1.
proxy auth_uri struct was manually cleaned up during deinit, but the logic
behind was kind of akward because it was required to find out which ones
were shared or not. Instead, let's switch to a proper refcount mechanism
and free the auth_uri struct directly in proxy_free_common().
COUNT_GLITCH() will implement an unconditional counter on its declaration
line when DEBUG_GLITCHES is set, and do nothing otherwise. The output will
be reported as "GLT" and can be filtered as "glt" on the CLI. The purpose
is to help figure what's happening if some glitches counters start going
through the roof. The macro supports an optional string argument to
describe the cause of the glitch (e.g. "truncated header"), which is then
reported in the dump.
For now this is conditioned by DEBUG_GLITCHES but if it turns out to be
light enough, maybe we'll keep it enabled full time. In this case it
might have to be moved away from debug dev, or at least documented (or
done as debug counters maybe so that dev can remain undocumented and
updatable within a branch?).
In order to count new event types, we'll need to support empty conditions
so that we don't have to fake if (1) that would pollute the output. This
change checks if #cond is an empty string before concatenating it with
the optional var args, and avoids dumping the colon on the dump if the
whole description is empty.
After master-worker refactoring, master performs re-exec only once up to
receiving "reload" command or USR2 signal. There is no more the second
master's re-exec to free unused memory. Thus, there is no longer need to export
environment variable HAPROXY_LOAD_SUCCESS with worker process load status. This
status can be simply saved in a global variable load_status.
Since 3.0, it is possible to assign a GUID to proxies, listeners and
servers. These objects are stored in a global tree guid_tree.
Proxies and listeners are static. However, servers may be added or
deleted at runtime, which imply that guid_tree must be protected. Fix
this by declaring a read-write lock to protect tree access.
For now, only guid_insert() and guid_remove() are protected using a
write lock. Outside of these, GUID tree is not accessed at runtime. If
server CLI commands are extended to support GUID as server identifier,
lookup operation should be extended with a read lock protection.
Note that during stat-file preloading, GUID tree is accessed for lookup.
However, as it is performed on startup which is single threaded, there
is no need for lock here. A BUG_ON() has been added to ensure this
precondition remains true.
This bug could caused a segfault when using dynamic servers with GUID.
However, it was never reproduced for now.
This must be backported up to 3.0. To avoid a conflict issue, the
previous cleanup patch can be merged before it.
event_hdl_sub_list_empty() may be used to know if the subscription list
passed as argument is empty or not (ie: if there currently are any
subcribers or not). It can be useful to know if the subscription is empty
is order to avoid unecessary preparation work and skip event publishing to
save CPU time if we already know that no one is interested in tracking the
changes for a given subscription list.
In order to help users detect when threads are behaving abnormally, let's
try to emit a warning when one is no longer making any progress. This will
allow to catch faulty situations more accurately, instead of occasionally
triggering just after the long task. It will also let users know that there
is something wrong with their configuration, and inspect the call trace to
figure whether they're using excessively long rules or Lua for example (the
usual warnings about lua-load vs lua-load-per-thread are still reported).
The warning will only be emitted for threads not yet marked as stuck so
as not to interfere with panic dumps and avoid sending a warning just
before a panic. A tainted flag is set when this happens however (0x2000).
There's currently no way to just emit a warning informing that a thread
is stuck without crashing. This is a problem because sometimes users
would benefit from this info to clean up their configuration (e.g. abuse
of map_regm, lua-load etc).
This commit adds a new function ha_stuck_warning() that will emit a
warning indicating that the designated thread has been stuck for XX
milliseconds, with a number of streams blocked, and will make that
thread dump its own state. The warning will then be sent to stderr,
along with some reminders about the impacts of such situations to
encourage users to fix their configuration.
In order not to disrupt operations, a local 4kB buffer is allocated
in the stack. This should be quite sufficient.
For now the function is not used.
The comment asks to update the "metrics_info" array, which does not
exist, instead it's called stat_cols_info[] and is in stats.c. Let's
mention all that to save time searching for the needed info.
While no version seems to have ever known that "metrics_info", it's not
needed to backport this as it's only a comment.
A ClientHello may be splitted accross several different CRYPTO frames,
then mixed in a single QUIC packet. This is used notably by clients such
as chrome to render the first Initial packet opaque to middleboxes.
Each packet frame is handled sequentially. Out-of-order CRYPTO frames
are buffered in a ncbuf, until gaps are filled and data is transferred
to the SSL stack. If CRYPTO frames are heavily splitted with small
fragments, buffering may fail as ncbuf does not support small gaps. This
causes the whole packet to be rejected and unacknowledged. It could be
solved if the client reemits its ClientHello after remixing its CRYPTO
frames.
This patch is written to improve CRYPTO frame parsing. Each CRYPTO
frames which cannot be buffered due to ncbuf limitation are now stored
in a temporary list. Packet parsing is completed until all frames have
been handled. If temporary list is not empty, reparsing is done on the
stored frames. With the newly buffered CRYPTO frames, ncbuf insert
operation may this time succeeds if the frame now covers a whole gap.
Reparsing will loop until either no progress can be made or it has been
done at least 3 times, to prevent CPU utilization.
This patch should fix github issue #2776.
This should be backported up to 2.6, after a period of observation. Note
that it relies on the following refactor patches :
MINOR: quic: extend return value of CRYPTO parsing
MINOR: quic: use dynamically allocated frame on parsing
MINOR: quic: simplify qc_parse_pkt_frms() return path
qc_handle_crypto_frm() is the function used to handled a newly received
CRYPTO frame. Change its API to use a newly dedicated return type. This
allows to report if the frame was properly handled, ignored if already
parsed previously or rejected after a fatal error.
This commit does not have any functional changes. However, it allows to
simplify qc_handle_crypto_frm() API by removing <fast_retrans> as output
parameter. Also, this patch will be necessary to support multiple
iteration of packet parsing for CRYPTO frames.
As reported by Pierre Maoui in GH #2477, it's not possible to render
control chars from variables or expressions verbatim in the payload part
of http-return statements. That's a problem because this part should not
require to be encoded at all (we could even imagine building favicons on
the fly for example).
In fact it is the LOG_OPT_HTTP option when passed as default options on
parse_logformat_string() which tells the log encoder that the payload
should be http-encoded using lf_chunk() instead of being printed using the
per-type encoder.
This option was set when parsing logformat expressions for lf-string
expression under http-return statements, as well as logformat expressions
for set-map action. While it is true that those actions may only be
used under http context, the LOG_OPT_HTTP logformat option is not relevant
there, because the payload is expected to be used without being encoded.
So let's simply get rid of this option when parsing logformat expressions
for set-map action key/value and lf-string from http-request return
action, and add a note next to LOG_OPT_HTTP option to indicate that it is
used to tell the log encoder that the payload should be HTTP-encoded.
Thanks to Pierre for having reported the issue and Willy for the
analysis and patch proposal.
These functions return a symbolic error code such as ECONNRESET to keep
logs compact while making them human-readable. It's a good alternative
to the numeric code in that it's more expressive, and a good one to the
full message since it's shorter and more precise (some codes even match
errno names).
The doc was updated so that the symbolic names appear in the table. It
could be useful to backport this feature to help with troubleshooting
some issues, though backporting the doc might possibly be more annoying
in case users have local patches already, so maybe the table update does
not need to be backported in this case.
While we get reports of connection setup errors in fc_err/bc_err, we
don't have the equivalent for the recv/send/splice syscalls. Let's
add provisions for new codes that cover the common errno values that
recv/send/splice can return, i.e. ECONNREFUSED, ENOMEM, EBADF, EFAULT,
EINVAL, ENOTCONN, ENOTSOCK, ENOBUFS, EPIPE. We also add a special case
for when the poller reported the error itself. It's worth noting that
EBADF/EFAULT/EINVAL will generally indicate serious bugs in the code
and should not be reported.
The only thing is that it's quite hard to forcefully (and reliably)
trigger these errors in automated tests as the timing is critical.
Using iptables to manually reset established connections in the
middle of large transfers at least permits to see some ECONNRESET
and/or EPIPE, but the other ones are harder to trigger.
It was the only one prefixed with "CO_ERR_", making it harder to batch
process and to look up. It was added in 2.5 by commit 61944f7a73 ("MINOR:
ssl: Set connection error code in case of SSL read or write fatal failure")
so it can be backported as far as 2.6 if needed to help integrate other
patches.
We're using a few occurrences of __builtin_prefetch() but tcc doesn't
know about it so let's give it a dummy definition. Now the code builds
and works again with tcc without thread support.
TCC is often convenient to quickly test builds, run CI tests etc. It has
limited thread support (e.g. no thread-local stuff) but that is often
sufficient for testing. TCC lacks __atomic_exchange_n() but has the
exactly equivalent __atomic_exchange(), and doesn't have any barrier.
For this reason we force the atomic_exchange to use the stricter SEQ_CST
mem ordering that allows to ignore the barrier.
[wt: that's upstream commit ca8b865 ("BUILD: support building with TCC")]
This commit introduces the tune.renice.startup and tune.renice.runtime
global keywords that allows to change the priority with setpriority().
tune.renice.startup is parsed and applied in the worker or the standalone
process for configuration parsing. If this keyword is used alone, the
nice value is changed to the previous one after configuration parsing.
tune.renice.runtime is applied after configuration parsing, so in the
worker or a standalone process. Combined with tune.renice.startup it
allows to have a different nice value during configuration parsing and
during runtime.
The feature was discussed in github issue #1919.
Example:
global
tune.renice.startup 15
tune.renice.runtime 0
When http-buffer-request option is set on a proxy, the processing will be
paused to wait the full request payload or a full buffer. So it is an entity
that block the processing, just like a rule or a filter that yields. So now,
it is reported as a waiting entity if an error or a timeout occurred.
To do so, an stream entity type is added for this option. There is no
pointer. And "waiting_entity" sample fetch returns the option name.
When a rule or a filter yields because it waits for something to be able to
continue its processing, this entity is saved in the stream. If an error or
a timeout occurred, info on this entity may be retrieved via the
"waiting_entity" sample fetch, for instance to dump it in the logs. This
info may be useful to found root cause of some bugs because it is a way to
know the processing was temporarily stopped. This may explain timeouts for
instance.
The sample fetch is not documented yet.
It is very similar to the last evaluated rule. When a filter returns an
error that interrupts the processing, it is saved in the stream, in the
last_entity field, with the type 2. The pointer on filter config is
saved. This pointer never changes during runtime and is part of the proxy's
structure. It is an element of the filter_configs list in the proxy
structure.
"last_entity" sample fetch was update accordingly. The filter identifier is
returned, if defined. Otherwise the save pointer.