Commit graph

18 commits

Author SHA1 Message Date
Baptiste Assmann
95db2bcfee MAJOR: check: find out which port to use for health check at run time
HAProxy used to deduce port used for health checks when parsing configuration
at startup time.
Because of this way of working, it makes it complicated to change the port at
run time.

The current patch changes this behavior and makes HAProxy to choose the
port used for health checking when preparing the check task itself.

A new type of error is introduced and reported when no port can be found.

There won't be any impact on performance, since the process to find out the
port value is made of a few 'if' statements.

This patch also introduces a new check state CHK_ST_PORT_MISS: this flag is
used to report an error in the case when HAProxy needs to establish a TCP
connection to a server, to perform a health check but no TCP ports can be
found for it.

And last, it also introduces a new stream termination condition:
SF_ERR_CHK_PORT. Purpose of this flag is to report an error in the event when
HAProxy has to run a health check but no port can be found to perform it.
2016-09-11 08:12:13 +02:00
Thierry FOURNIER / OZON.IO
4cac359a39 MEDIUM: log: Decompose %Tq in %Th %Ti %TR
Tq is the time between the instant the connection is accepted and a
complete valid request is received. This time includes the handshake
(SSL / Proxy-Protocol), the idle when the browser does preconnect and
the request reception.

This patch decomposes %Tq in 3 measurements names %Th, %Ti, and %TR
which returns respectively the handshake time, the idle time and the
duration of valid request reception. It also adds %Ta which reports
the request's active time, which is the total time without %Th nor %Ti.
It replaces %Tt as the total time, reporting accurate measurements for
HTTP persistent connections.

%Th is avalaible for TCP and HTTP sessions, %Ti, %TR and %Ta are only
avalaible for HTTP connections.

In addition to this, we have new timestamps %tr, %trg and %trl, which
log the date of start of receipt of the request, respectively in the
default format, in GMT time and in local time (by analogy with %t, %T
and %Tl). All of them are obviously only available for HTTP. These values
are more relevant as they more accurately represent the request date
without being skewed by a browser's preconnect nor a keep-alive idle
time.

The HTTP log format and the CLF log format have been modified to
use %tr, %TR, and %Ta respectively instead of %t, %Tq and %Tt. This
way the default log formats now produce the expected output for users
who don't want to manually fiddle with the log-format directive.

Example with the following log-format :

   log-format "%ci:%cp [%tr] %ft %b/%s h=%Th/i=%Ti/R=%TR/w=%Tw/c=%Tc/r=%Tr/a=%Ta/t=%Tt %ST %B %CC %CS %tsc %ac/%fc/%bc/%sc/%rc %sq/%bq %hr %hs %{+Q}r"

The request was sent by hand using "openssl s_client -connect" :

   Aug 23 14:43:20 haproxy[25446]: 127.0.0.1:45636 [23/Aug/2016:14:43:20.221] test~ test/test h=6/i=2375/R=261/w=0/c=1/r=0/a=262/t=2643 200 145 - - ---- 1/1/0/0/0 0/0 "GET / HTTP/1.1"

=> 6 ms of SSL handshake, 2375 waiting before sending the first char (in
fact the time to type the first line), 261 ms before the end of the request,
no time spent in queue, 1 ms spend connecting to the server, immediate
response, total active time for this request = 262ms. Total time from accept
to close : 2643 ms.

The timing now decomposes like this :

                 first request               2nd request
      |<-------------------------------->|<-------------- ...
      t         tr                       t    tr ...
   ---|----|----|----|----|----|----|----|----|--
      : Th   Ti   TR   Tw   Tc   Tr   Td : Ti   ...
      :<---- Tq ---->:                   :
      :<-------------- Tt -------------->:
                :<--------- Ta --------->:
2016-08-23 15:18:08 +02:00
Christopher Faulet
fcf035cb5a MINOR: filters: Add stream_filters structure to hide filters info
From the stream point of view, this new structure is opaque. it hides filters
implementation details. So, impact for future optimizations will be reduced
(well, we hope so...).

Some small improvements has been made in filters.c to avoid useless checks.
2016-02-09 14:53:15 +01:00
Christopher Faulet
3e34429515 MEDIUM: filters: Use macros to call filters callbacks to speed-up processing
When no filter is attached to the stream, the CPU footprint due to the calls to
filters_* functions is huge, especially for chunk-encoded messages. Using macros
to check if we have some filters or not is a great improvement.

Furthermore, instead of checking the filter list emptiness, we introduce a flag
to know if filters are attached or not to a stream.
2016-02-09 14:53:15 +01:00
Christopher Faulet
92d3638d2d MAJOR: filters/http: Rewrite the HTTP compression as a filter
HTTP compression has been rewritten to use the filter API. This is more a PoC
than other thing for now. It allocates memory to work. So, if only for that, it
should be rewritten.

In the mean time, the implementation has been refactored to allow its use with
other filters. However, there are limitations that should be respected:

  - No filter placed after the compression one is allowed to change input data
    (in 'http_data' callback).
  - No filter placed before the compression one is allowed to change forwarded
    data (in 'http_forward_data' callback).

For now, these limitations are informal, so you should be careful when you use
several filters.

About the configuration, 'compression' keywords are still supported and must be
used to configure the HTTP compression behavior. In absence of a 'filter' line
for the compression filter, it is added in the filter chain when the first
compression' line is parsed. This is an easy way to do when you do not use other
filters. But another filter exists, an error is reported so that the user must
explicitly declare the filter.

For example:

  listen tst
      ...
      compression algo gzip
      compression offload
      ...
      filter flt_1
      filter compression
      filter flt_2
      ...
2016-02-09 14:53:15 +01:00
Christopher Faulet
d7c9196ae5 MAJOR: filters: Add filters support
This patch adds the support of filters in HAProxy. The main idea is to have a
way to "easely" extend HAProxy by adding some "modules", called filters, that
will be able to change HAProxy behavior in a programmatic way.

To do so, many entry points has been added in code to let filters to hook up to
different steps of the processing. A filter must define a flt_ops sutrctures
(see include/types/filters.h for details). This structure contains all available
callbacks that a filter can define:

struct flt_ops {
       /*
        * Callbacks to manage the filter lifecycle
        */
       int  (*init)  (struct proxy *p);
       void (*deinit)(struct proxy *p);
       int  (*check) (struct proxy *p);

        /*
         * Stream callbacks
         */
        void (*stream_start)     (struct stream *s);
        void (*stream_accept)    (struct stream *s);
        void (*session_establish)(struct stream *s);
        void (*stream_stop)      (struct stream *s);

       /*
        * HTTP callbacks
        */
       int  (*http_start)         (struct stream *s, struct http_msg *msg);
       int  (*http_start_body)    (struct stream *s, struct http_msg *msg);
       int  (*http_start_chunk)   (struct stream *s, struct http_msg *msg);
       int  (*http_data)          (struct stream *s, struct http_msg *msg);
       int  (*http_last_chunk)    (struct stream *s, struct http_msg *msg);
       int  (*http_end_chunk)     (struct stream *s, struct http_msg *msg);
       int  (*http_chunk_trailers)(struct stream *s, struct http_msg *msg);
       int  (*http_end_body)      (struct stream *s, struct http_msg *msg);
       void (*http_end)           (struct stream *s, struct http_msg *msg);
       void (*http_reset)         (struct stream *s, struct http_msg *msg);
       int  (*http_pre_process)   (struct stream *s, struct http_msg *msg);
       int  (*http_post_process)  (struct stream *s, struct http_msg *msg);
       void (*http_reply)         (struct stream *s, short status,
                                   const struct chunk *msg);
};

To declare and use a filter, in the configuration, the "filter" keyword must be
used in a listener/frontend section:

  frontend test
    ...
    filter <FILTER-NAME> [OPTIONS...]

The filter referenced by the <FILTER-NAME> must declare a configuration parser
on its own name to fill flt_ops and filter_conf field in the proxy's
structure. An exemple will be provided later to make it perfectly clear.

For now, filters cannot be used in backend section. But this is only a matter of
time. Documentation will also be added later. This is the first commit of a long
list about filters.

It is possible to have several filters on the same listener/frontend. These
filters are stored in an array of at most MAX_FILTERS elements (define in
include/types/filters.h). Again, this will be replaced later by a list of
filters.

The filter API has been highly refactored. Main changes are:

* Now, HA supports an infinite number of filters per proxy. To do so, filters
  are stored in list.

* Because filters are stored in list, filters state has been moved from the
  channel structure to the filter structure. This is cleaner because there is no
  more info about filters in channel structure.

* It is possible to defined filters on backends only. For such filters,
  stream_start/stream_stop callbacks are not called. Of course, it is possible
  to mix frontend and backend filters.

* Now, TCP streams are also filtered. All callbacks without the 'http_' prefix
  are called for all kind of streams. In addition, 2 new callbacks were added to
  filter data exchanged through a TCP stream:

    - tcp_data: it is called when new data are available or when old unprocessed
      data are still waiting.

    - tcp_forward_data: it is called when some data can be consumed.

* New callbacks attached to channel were added:

    - channel_start_analyze: it is called when a filter is ready to process data
      exchanged through a channel. 2 new analyzers (a frontend and a backend)
      are attached to channels to call this callback. For a frontend filter, it
      is called before any other analyzer. For a backend filter, it is called
      when a backend is attached to a stream. So some processing cannot be
      filtered in that case.

    - channel_analyze: it is called before each analyzer attached to a channel,
      expects analyzers responsible for data sending.

    - channel_end_analyze: it is called when all other analyzers have finished
      their processing. A new analyzers is attached to channels to call this
      callback. For a TCP stream, this is always the last one called. For a HTTP
      one, the callback is called when a request/response ends, so it is called
      one time for each request/response.

* 'session_established' callback has been removed. Everything that is done in
  this callback can be handled by 'channel_start_analyze' on the response
  channel.

* 'http_pre_process' and 'http_post_process' callbacks have been replaced by
  'channel_analyze'.

* 'http_start' callback has been replaced by 'http_headers'. This new one is
  called just before headers sending and parsing of the body.

* 'http_end' callback has been replaced by 'channel_end_analyze'.

* It is possible to set a forwarder for TCP channels. It was already possible to
  do it for HTTP ones.

* Forwarders can partially consumed forwardable data. For this reason a new
  HTTP message state was added before HTTP_MSG_DONE : HTTP_MSG_ENDING.

Now all filters can define corresponding callbacks (http_forward_data
and tcp_forward_data). Each filter owns 2 offsets relative to buf->p, next and
forward, to track, respectively, input data already parsed but not forwarded yet
by the filter and parsed data considered as forwarded by the filter. A any time,
we have the warranty that a filter cannot parse or forward more input than
previous ones. And, of course, it cannot forward more input than it has
parsed. 2 macros has been added to retrieve these offets: FLT_NXT and FLT_FWD.

In addition, 2 functions has been added to change the 'next size' and the
'forward size' of a filter. When a filter parses input data, it can alter these
data, so the size of these data can vary. This action has an effet on all
previous filters that must be handled. To do so, the function
'filter_change_next_size' must be called, passing the size variation. In the
same spirit, if a filter alter forwarded data, it must call the function
'filter_change_forward_size'. 'filter_change_next_size' can be called in
'http_data' and 'tcp_data' callbacks and only these ones. And
'filter_change_forward_size' can be called in 'http_forward_data' and
'tcp_forward_data' callbacks and only these ones. The data changes are the
filter responsability, but with some limitation. It must not change already
parsed/forwarded data or data that previous filters have not parsed/forwarded
yet.

Because filters can be used on backends, when we the backend is set for a
stream, we add filters defined for this backend in the filter list of the
stream. But we must only do that when the backend and the frontend of the stream
are not the same. Else same filters are added a second time leading to undefined
behavior.

The HTTP compression code had to be moved.

So it simplifies http_response_forward_body function. To do so, the way the data
are forwarded has changed. Now, a filter (and only one) can forward data. In a
commit to come, this limitation will be removed to let all filters take part to
data forwarding. There are 2 new functions that filters should use to deal with
this feature:

 * flt_set_http_data_forwarder: This function sets the filter (using its id)
   that will forward data for the specified HTTP message. It is possible if it
   was not already set by another filter _AND_ if no data was yet forwarded
   (msg->msg_state <= HTTP_MSG_BODY). It returns -1 if an error occurs.

 * flt_http_data_forwarder: This function returns the filter id that will
   forward data for the specified HTTP message. If there is no forwarder set, it
   returns -1.

When an HTTP data forwarder is set for the response, the HTTP compression is
disabled. Of course, this is not definitive.
2016-02-09 14:53:15 +01:00
Thierry FOURNIER
25f4e3ef33 CLEANUP: vars: remove unused struct
The commit "MEDIUM: vars: move the session variables to the session, not the stream" (ebcd4844e82a4198ea5d98fe491a46267da1d1ec")
moves the variables from the stream to the session. It forgot to remove
the stream definition of the "vars_sess".
2015-07-10 16:30:08 +02:00
Thierry FOURNIER
4834bc773c MEDIUM: vars: adds support of variables
This patch adds support of variables during the processing of each stream. The
variables scope can be set as 'session', 'transaction', 'request' or 'response'.
The variable type is the type returned by the assignment expression. The type
can change while the processing.

The allocated memory can be controlled for each scope and each request, and for
the global process.
2015-06-13 23:01:37 +02:00
Willy Tarreau
152b81e7b2 BUG/MAJOR: tcp/http: fix current_rule assignment when restarting over a ruleset
Commit bc4c1ac ("MEDIUM: http/tcp: permit to resume http and tcp custom
actions") introduced the ability to interrupt and restart processing in
the middle of a TCP/HTTP ruleset. But it doesn't do it in a consistent
way : it checks current_rule_list, immediately dereferences current_rule,
which is only set in certain cases and never cleared. So that broke the
tcp-request content rules when the processing was interrupted due to
missing data, because current_rule was not yet set (segfault) or could
have been inherited from another ruleset if it was used in a backend
(random behaviour).

The proper way to do it is to always set current_rule before dereferencing
it. But we don't want to set it for all rules because we don't want any
action to provide a checkpointing mechanism. So current_rule is set to NULL
before entering the loop, and only used if not NULL and if current_rule_list
matches the current list. This way they both serve as a guard for the other
one. This fix also makes the current rule point to the rule instead of its
list element, as it's much easier to manipulate.

No backport is needed, this is 1.6-specific.
2015-04-20 13:46:20 +02:00
Willy Tarreau
b2bf8331fb MINOR: session: add stick counters to the struct session
The stick counters in the session will be used for everything not related
to contents, hence the connections / concurrent sessions / etc. They will
be usable by "tcp-request connection" rules even without a stream. For now
they're just allocated and initialized.
2015-04-06 11:37:30 +02:00
Willy Tarreau
1f52bb27ec CLEANUP: stream: don't set ->target to the incoming connection anymore
Now that we have sess->origin to carry that information along, we don't
need to put that into strm->target anymore, so we remove one dependence
on the stream in embryonic connections.
2015-04-06 11:37:29 +02:00
Willy Tarreau
eee5b51248 MAJOR: http: move http_txn out of struct stream
Now this one is dynamically allocated. It means that 280 bytes of memory
are saved per TCP stream, but more importantly that it will become
possible to remove the l7 pointer from fetches and converters since
it will be deduced from the stream and will support being null.

A lot of care was taken because it's easy to forget a test somewhere,
and the previous code used to always trust s->txn for being valid, but
all places seem to have been visited.

All HTTP fetch functions check the txn first so we shouldn't have any
issue there even when called from TCP. When branching from a TCP frontend
to an HTTP backend, the txn is properly allocated at the same time as the
hdr_idx.
2015-04-06 11:35:52 +02:00
Willy Tarreau
cb7dd015be MEDIUM: http: move header captures from http_txn to struct stream
The header captures are now general purpose captures since tcp rules
can use them to capture various contents. That removes a dependency
on http_txn that appeared in some sample fetch functions and in the
order by which captures and http_txn were allocated.

Interestingly the reset of the header captures were done at too many
places as http_init_txn() used to do it while it was done previously
in every call place.
2015-04-06 11:35:52 +02:00
Willy Tarreau
e36cbcb3b0 MEDIUM: stream: move the frontend's pointer to the session
Just like for the listener, the frontend is session-wide so let's move
it to the session. There are a lot of places which were changed but the
changes are minimal in fact.
2015-04-06 11:23:58 +02:00
Willy Tarreau
fb0afa77c9 MEDIUM: stream: move the listener's pointer to the session
The listener is session-specific, move it there.
2015-04-06 11:23:57 +02:00
Willy Tarreau
b1ec8c4a59 MINOR: session: start to reintroduce struct session
There is now a pointer to the session in the stream, which is NULL
for now. The session pool is created as well. Some parts will move
from the stream to the session now.
2015-04-06 11:23:57 +02:00
Willy Tarreau
e7dff02dd4 REORG/MEDIUM: stream: rename stream flags from SN_* to SF_*
This is in order to keep things consistent.
2015-04-06 11:23:57 +02:00
Willy Tarreau
87b09668be REORG/MAJOR: session: rename the "session" entity to "stream"
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.

In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.

The files stream.{c,h} were added and session.{c,h} removed.

The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.

Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.

Once all changes are completed, we should see approximately this :

   L7 - http_txn
   L6 - stream
   L5 - session
   L4 - connection | applet

There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.

Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
2015-04-06 11:23:56 +02:00