haproxy/src/pool.c
Willy Tarreau 6b17310757 MEDIUM: pools: be a bit smarter when merging comparable size pools
By default, pools of comparable sizes are merged together. However, the
current algorithm is dumb: it rounds the requested size to the next
multiple of 16 and compares the sizes like this. This results in many
entries which are already multiples of 16 not being merged, for example
1024 and 1032 are separate, 65536 and 65540 are separate, 48 and 56 are
separate (though 56 merges with 64).

This commit changes this to consider not just the entry size but also the
average entry size, that is, it compares the average size of all objects
sharing the pool with the size of the object looking for a pool. If the
object is not more than 1% bigger nor smaller than the current average
size or if it neither 16 bytes smaller nor larger, then it can be merged.
Also, it always respects exact matches in order to avoid merging objects
into larger pools or worse, extending existing ones for no reason, and
when there's a tie, it always avoids extending an existing pool.

Also, we now visit all existing pools in order to spot the best one, we
do not stop anymore at the smallest one large enough. Theoretically this
could cost a bit of CPU but in practice it's O(N^2) with N quite small
(typically in the order of 100) and the cost at each step is very low
(compare a few integer values). But as a side effect, pools are no
longer sorted by size, "show pools bysize" is needed for this.

This causes the objects to be much better grouped together, accepting to
use a little bit more sometimes to avoid fragmentation, without causing
everyone to be merged into the same pool. Thanks to this we're now
seeing 36 pools instead of 48 by default, with some very nice examples
of compact grouping:

  - Pool qc_stream_r (80 bytes) : 13 users
      >  qc_stream_r : size=72 flags=0x1 align=0
      >  quic_cstrea : size=80 flags=0x1 align=0
      >  qc_stream_a : size=64 flags=0x1 align=0
      >  hlua_esub   : size=64 flags=0x1 align=0
      >  stconn      : size=80 flags=0x1 align=0
      >  dns_query   : size=64 flags=0x1 align=0
      >  vars        : size=80 flags=0x1 align=0
      >  filter      : size=64 flags=0x1 align=0
      >  session pri : size=64 flags=0x1 align=0
      >  fcgi_hdr_ru : size=72 flags=0x1 align=0
      >  fcgi_param_ : size=72 flags=0x1 align=0
      >  pendconn    : size=80 flags=0x1 align=0
      >  capture     : size=64 flags=0x1 align=0

  - Pool h3s (56 bytes) : 17 users
      >  h3s         : size=56 flags=0x1 align=0
      >  qf_crypto   : size=48 flags=0x1 align=0
      >  quic_tls_se : size=48 flags=0x1 align=0
      >  quic_arng   : size=56 flags=0x1 align=0
      >  hlua_flt_ct : size=56 flags=0x1 align=0
      >  promex_metr : size=48 flags=0x1 align=0
      >  conn_hash_n : size=56 flags=0x1 align=0
      >  resolv_requ : size=48 flags=0x1 align=0
      >  mux_pt      : size=40 flags=0x1 align=0
      >  comp_state  : size=40 flags=0x1 align=0
      >  notificatio : size=48 flags=0x1 align=0
      >  tasklet     : size=56 flags=0x1 align=0
      >  bwlim_state : size=48 flags=0x1 align=0
      >  xprt_handsh : size=48 flags=0x1 align=0
      >  email_alert : size=56 flags=0x1 align=0
      >  caphdr      : size=41 flags=0x1 align=0
      >  caphdr      : size=41 flags=0x1 align=0

  - Pool quic_cids (32 bytes) : 13 users
      >  quic_cids   : size=16 flags=0x1 align=0
      >  quic_tls_ke : size=32 flags=0x1 align=0
      >  quic_tls_iv : size=12 flags=0x1 align=0
      >  cbuf        : size=32 flags=0x1 align=0
      >  hlua_queuew : size=24 flags=0x1 align=0
      >  hlua_queue  : size=24 flags=0x1 align=0
      >  promex_modu : size=24 flags=0x1 align=0
      >  cache_st    : size=24 flags=0x1 align=0
      >  spoe_appctx : size=32 flags=0x1 align=0
      >  ehdl_sub_tc : size=32 flags=0x1 align=0
      >  fcgi_flt_ct : size=16 flags=0x1 align=0
      >  sig_handler : size=32 flags=0x1 align=0
      >  pipe        : size=24 flags=0x1 align=0

  - Pool quic_crypto (1032 bytes) : 2 users
      >  quic_crypto : size=1032 flags=0x1 align=0
      >  requri      : size=1024 flags=0x1 align=0

  - Pool quic_conn_r (65544 bytes) : 2 users
      >  quic_conn_r : size=65536 flags=0x1 align=0
      >  dns_msg_buf : size=65540 flags=0x1 align=0

On a very unscientific test consisting in sending 1 million H1 requests
and 1 million H2 requests to the stats page, we're seeing an ~6% lower
memory usage with the patch:

  before the patch:
    Total: 48 pools, 4120832 bytes allocated, 4120832 used (~3555680 by thread caches).

  after the patch:
    Total: 36 pools, 3880648 bytes allocated, 3880648 used (~3299064 by thread caches).

This should be taken with care however since pools allocate and release
in batches.
2025-03-25 18:01:01 +01:00

1590 lines
50 KiB
C

/*
* Memory management functions.
*
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <import/plock.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet-t.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/errors.h>
#include <haproxy/global.h>
#include <haproxy/list.h>
#include <haproxy/pool.h>
#include <haproxy/pool-os.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stats-t.h>
#include <haproxy/stconn.h>
#include <haproxy/thread.h>
#include <haproxy/tools.h>
/* These ones are initialized per-thread on startup by init_pools() */
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
struct list pools __read_mostly = LIST_HEAD_INIT(pools);
int mem_poison_byte __read_mostly = 'P';
int pool_trim_in_progress = 0;
uint pool_debugging __read_mostly = /* set of POOL_DBG_* flags */
#if defined(DEBUG_FAIL_ALLOC) && (DEBUG_FAIL_ALLOC > 0)
POOL_DBG_FAIL_ALLOC |
#endif
#if defined(DEBUG_DONT_SHARE_POOLS) && (DEBUG_DONT_SHARE_POOLS > 0)
POOL_DBG_DONT_MERGE |
#endif
#if defined(DEBUG_POOL_INTEGRITY) && (DEBUG_POOL_INTEGRITY > 0)
POOL_DBG_COLD_FIRST |
POOL_DBG_INTEGRITY |
#endif
#if defined(CONFIG_HAP_NO_GLOBAL_POOLS)
POOL_DBG_NO_GLOBAL |
#endif
#if defined(DEBUG_NO_POOLS) && (DEBUG_NO_POOLS > 0)
POOL_DBG_NO_CACHE |
#endif
#if defined(DEBUG_POOL_TRACING) && (DEBUG_POOL_TRACING > 0)
POOL_DBG_CALLER |
#endif
#if defined(DEBUG_MEMORY_POOLS) && (DEBUG_MEMORY_POOLS > 0)
POOL_DBG_TAG |
#endif
#if defined(DEBUG_UAF) && (DEBUG_UAF > 0)
POOL_DBG_NO_CACHE |
POOL_DBG_UAF |
#endif
0;
static const struct {
uint flg;
const char *set;
const char *clr;
const char *hlp;
} dbg_options[] = {
/* flg, set, clr, hlp */
{ POOL_DBG_FAIL_ALLOC, "fail", "no-fail", "randomly fail allocations" },
{ POOL_DBG_DONT_MERGE, "no-merge", "merge", "disable merging of similar pools" },
{ POOL_DBG_COLD_FIRST, "cold-first", "hot-first", "pick cold objects first" },
{ POOL_DBG_INTEGRITY, "integrity", "no-integrity", "enable cache integrity checks" },
{ POOL_DBG_NO_GLOBAL, "no-global", "global", "disable global shared cache" },
{ POOL_DBG_NO_CACHE, "no-cache", "cache", "disable thread-local cache" },
{ POOL_DBG_CALLER, "caller", "no-caller", "save caller information in cache" },
{ POOL_DBG_TAG, "tag", "no-tag", "add tag at end of allocated objects" },
{ POOL_DBG_POISON, "poison", "no-poison", "poison newly allocated objects" },
{ POOL_DBG_UAF, "uaf", "no-uaf", "enable use-after-free checks (slow)" },
{ 0 /* end */ }
};
/* describes a snapshot of a pool line about to be dumped by "show pools" */
struct pool_dump_info {
const struct pool_head *entry;
ulong alloc_items;
ulong alloc_bytes;
ulong used_items;
ulong cached_items;
ulong need_avg;
ulong failed_items;
};
/* context used by "show pools" */
struct show_pools_ctx {
char *prefix; /* if non-null, match this prefix name for the pool */
int how; /* bits 0..3: 0=no sort, 1=by name, 2=by item size, 3=by total alloc */
int maxcnt; /* 0=no limit, other=max number of output entries */
};
static int mem_fail_rate __read_mostly = 0;
static int using_default_allocator __read_mostly = 1; // linked-in allocator or LD_PRELOADed one ?
static int disable_trim __read_mostly = 0;
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
static int(*_malloc_trim)(size_t) = NULL;
/* returns the pool hash bucket an object should use based on its pointer.
* Objects will needed consistent bucket assignment so that they may be
* allocated on one thread and released on another one. Thus only the
* pointer is usable.
*/
static forceinline unsigned int pool_pbucket(const void *ptr)
{
return ptr_hash(ptr, CONFIG_HAP_POOL_BUCKETS_BITS);
}
/* returns the pool hash bucket to use for the current thread. This should only
* be used when no pointer is available (e.g. count alloc failures).
*/
static forceinline unsigned int pool_tbucket(void)
{
return tid % CONFIG_HAP_POOL_BUCKETS;
}
/* ask the allocator to trim memory pools.
* This must run under thread isolation so that competing threads trying to
* allocate or release memory do not prevent the allocator from completing
* its job. We just have to be careful as callers might already be isolated
* themselves.
*/
void trim_all_pools(void)
{
int isolated = thread_isolated();
if (!isolated)
thread_isolate();
malloc_trim(0);
if (!isolated)
thread_release();
}
/* check if we're using the same allocator as the one that provides
* malloc_trim() and mallinfo(). The principle is that on glibc, both
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
* can check if malloc() is performed through glibc or any other one
* the executable was linked against (e.g. jemalloc). Prior to this we
* have to check whether we're running on jemalloc by verifying if the
* mallctl() function is provided. Its pointer will be used later.
*/
static void detect_allocator(void)
{
#if defined(__ELF__)
extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
my_mallctl = mallctl;
#endif
if (!my_mallctl) {
/* trick: we won't enter here if mallctl() is known at link
* time. This allows to detect if the symbol was changed since
* the program was linked, indicating it's not running on the
* expected allocator (due to an LD_PRELOAD) and that we must
* be extra cautious and avoid some optimizations that are
* known to break such as malloc_trim().
*/
my_mallctl = get_sym_curr_addr("mallctl");
using_default_allocator = (my_mallctl == NULL);
}
if (!my_mallctl) {
#if defined(HA_HAVE_MALLOC_TRIM)
#ifdef HA_HAVE_MALLINFO2
struct mallinfo2 mi1, mi2;
#else
struct mallinfo mi1, mi2;
#endif
void *ptr;
#ifdef HA_HAVE_MALLINFO2
mi1 = mallinfo2();
#else
mi1 = mallinfo();
#endif
ptr = DISGUISE(malloc(1));
#ifdef HA_HAVE_MALLINFO2
mi2 = mallinfo2();
#else
mi2 = mallinfo();
#endif
free(DISGUISE(ptr));
using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
#elif defined(HA_HAVE_MALLOC_ZONE)
using_default_allocator = (malloc_default_zone() != NULL);
#endif
}
/* detect presence of malloc_trim() */
_malloc_trim = get_sym_next_addr("malloc_trim");
}
/* replace the libc's malloc_trim() so that we can also intercept the calls
* from child libraries when the allocator is not the default one.
*/
int malloc_trim(size_t pad)
{
int ret = 0;
if (disable_trim)
return ret;
HA_ATOMIC_INC(&pool_trim_in_progress);
if (my_mallctl) {
/* here we're on jemalloc and malloc_trim() is called either
* by haproxy or another dependency (the worst case that
* normally crashes). Instead of just failing, we can actually
* emulate it so let's do it now.
*/
unsigned int i, narenas = 0;
size_t len = sizeof(narenas);
if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
for (i = 0; i < narenas; i ++) {
char mib[32] = {0};
snprintf(mib, sizeof(mib), "arena.%u.purge", i);
(void)my_mallctl(mib, NULL, NULL, NULL, 0);
ret = 1; // success
}
}
}
else if (!using_default_allocator) {
/* special allocators that can be LD_PRELOADed end here */
ret = 0; // did nothing
}
else if (_malloc_trim) {
/* we're typically on glibc and not overridden */
ret = _malloc_trim(pad);
}
#if defined(HA_HAVE_MALLOC_ZONE)
else {
/* we're on MacOS, there's an equivalent mechanism */
vm_address_t *zones;
unsigned int i, nzones;
if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
for (i = 0; i < nzones; i ++) {
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
/* we cannot purge anonymous zones */
if (zone->zone_name) {
malloc_zone_pressure_relief(zone, 0);
ret = 1; // success
}
}
}
}
#endif
HA_ATOMIC_DEC(&pool_trim_in_progress);
/* here we have ret=0 if nothing was release, or 1 if some were */
return ret;
}
static int mem_should_fail(const struct pool_head *pool)
{
int ret = 0;
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
if (mem_fail_rate > statistical_prng_range(100))
ret = 1;
else
ret = 0;
}
return ret;
}
/* Try to find an existing shared pool with the same characteristics and
* returns it, otherwise creates this one. NULL is returned if no memory
* is available for a new creation. Two flags are supported :
* - MEM_F_SHARED to indicate that the pool may be shared with other users
* - MEM_F_EXACT to indicate that the size must not be rounded up
*/
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
{
unsigned int extra_mark, extra_caller, extra;
struct pool_registration *reg;
struct pool_head *pool;
struct pool_head *entry;
struct list *start;
unsigned int align;
unsigned int best_diff;
int thr __maybe_unused;
pool = NULL;
reg = calloc(1, sizeof(*reg));
if (!reg)
goto fail;
strlcpy2(reg->name, name, sizeof(reg->name));
reg->size = size;
reg->flags = flags;
reg->align = 0;
extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0;
extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0;
extra = extra_mark + extra_caller;
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
/* we'll store two lists there, we need the room for this. Let's
* make sure it's always OK even when including the extra word
* that is stored after the pci struct.
*/
if (size + extra - extra_caller < sizeof(struct pool_cache_item))
size = sizeof(struct pool_cache_item) + extra_caller - extra;
}
/* Now we know our size is set to the strict minimum possible. It may
* be OK for elements allocated with an exact size (e.g. buffers), but
* we're going to round the size up 16 bytes to merge almost identical
* pools together. We only round up however when we add the debugging
* tag since it's used to detect overflows. Otherwise we only round up
* to the size of a word to preserve alignment.
*/
if (!(flags & MEM_F_EXACT)) {
align = (pool_debugging & POOL_DBG_TAG) ? sizeof(void *) : 16;
size = ((size + align - 1) & -align);
}
/* TODO: thread: we do not lock pool list for now because all pools are
* created during HAProxy startup (so before threads creation) */
start = &pools;
best_diff = ~0U;
list_for_each_entry(entry, &pools, list) {
if (entry->size == size ||
(!(flags & MEM_F_EXACT) && !pool_allocated(entry) &&
/* size within 1% of avg size */
(((ullong)entry->sum_size * 100ULL < (ullong)size * entry->users * 101ULL &&
(ullong)entry->sum_size * 101ULL > (ullong)size * entry->users * 100ULL) ||
/* or +/- 16 compared to the current avg size */
(entry->sum_size - 16 * entry->users < size * entry->users &&
entry->sum_size + 16 * entry->users > size * entry->users)))) {
/* either we can share this place and we take it, or
* we look for a shareable one or for the next position
* before which we will insert a new one.
*/
if ((flags & entry->flags & MEM_F_SHARED) &&
(!(pool_debugging & POOL_DBG_DONT_MERGE) ||
strcmp(name, entry->name) == 0)) {
/* we can share this one */
uint diff = (abs((int)(size * entry->users - entry->size)) + entry->users / 2) / entry->users;
/* the principle here is:
* - if the best pool is smaller and the current
* candidate larger, we prefer the larger one
* so as not to grow an existing pool;
* - otherwise we go for the smallest distance
* from the existing one.
*/
if (!pool || entry->size == size ||
(pool->size != size &&
((pool->size < size && entry->size >= size) ||
(diff == best_diff && entry->size >= size) ||
(diff < best_diff)))) {
best_diff = diff;
pool = entry;
}
}
}
else if (entry->size > size) {
/* insert before this one */
start = &entry->list;
}
}
if (!pool) {
void *pool_addr;
pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool));
if (!pool_addr)
goto fail;
/* always provide an aligned pool */
pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool));
pool->base_addr = pool_addr; // keep it, it's the address to free later
if (name)
strlcpy2(pool->name, name, sizeof(pool->name));
pool->alloc_sz = size + extra;
pool->size = size;
pool->flags = flags;
LIST_APPEND(start, &pool->list);
LIST_INIT(&pool->regs);
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
/* update per-thread pool cache if necessary */
for (thr = 0; thr < MAX_THREADS; thr++) {
LIST_INIT(&pool->cache[thr].list);
pool->cache[thr].tid = thr;
pool->cache[thr].pool = pool;
}
}
}
else {
/* we found the best one */
if (size > pool->size) {
pool->size = size;
pool->alloc_sz = size + extra;
}
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
}
LIST_APPEND(&pool->regs, &reg->list);
pool->users++;
pool->sum_size += size;
return pool;
fail:
free(reg);
return NULL;
}
/* Tries to allocate an object for the pool <pool> using the system's allocator
* and directly returns it. The pool's allocated counter is checked but NOT
* updated, this is left to the caller, and but no other checks are performed.
*/
void *pool_get_from_os_noinc(struct pool_head *pool)
{
if (!pool->limit || pool_allocated(pool) < pool->limit) {
void *ptr;
if (pool_debugging & POOL_DBG_UAF)
ptr = pool_alloc_area_uaf(pool->alloc_sz);
else
ptr = pool_alloc_area(pool->alloc_sz);
if (ptr)
return ptr;
_HA_ATOMIC_INC(&pool->buckets[pool_tbucket()].failed);
}
activity[tid].pool_fail++;
return NULL;
}
/* Releases a pool item back to the operating system but DOES NOT update
* the allocation counter, it's left to the caller to do it. It may be
* done before or after, it doesn't matter, the function does not use it.
*/
void pool_put_to_os_nodec(struct pool_head *pool, void *ptr)
{
if (pool_debugging & POOL_DBG_UAF)
pool_free_area_uaf(ptr, pool->alloc_sz);
else
pool_free_area(ptr, pool->alloc_sz);
}
/* Tries to allocate an object for the pool <pool> using the system's allocator
* and directly returns it. The pool's counters are updated but the object is
* never cached, so this is usable with and without local or shared caches.
*/
void *pool_alloc_nocache(struct pool_head *pool, const void *caller)
{
void *ptr = NULL;
uint bucket;
uint used;
ptr = pool_get_from_os_noinc(pool);
if (!ptr)
return NULL;
bucket = pool_pbucket(ptr);
_HA_ATOMIC_INC(&pool->buckets[bucket].allocated);
used = _HA_ATOMIC_FETCH_ADD(&pool->buckets[bucket].used, 1);
swrate_add_scaled_opportunistic(&pool->buckets[bucket].needed_avg, POOL_AVG_SAMPLES, used, POOL_AVG_SAMPLES/4);
/* keep track of where the element was allocated from */
POOL_DEBUG_SET_MARK(pool, ptr);
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, caller);
return ptr;
}
/* Release a pool item back to the OS and keeps the pool's counters up to date.
* This is always defined even when pools are not enabled (their usage stats
* are maintained).
*/
void pool_free_nocache(struct pool_head *pool, void *ptr)
{
uint bucket = pool_pbucket(ptr);
uint used;
used = _HA_ATOMIC_SUB_FETCH(&pool->buckets[bucket].used, 1);
_HA_ATOMIC_DEC(&pool->buckets[bucket].allocated);
swrate_add_opportunistic(&pool->buckets[bucket].needed_avg, POOL_AVG_SAMPLES, used);
pool_put_to_os_nodec(pool, ptr);
}
/* Updates <pch>'s fill_pattern and fills the free area after <item> with it,
* up to <size> bytes. The item part is left untouched.
*/
void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
{
ulong *ptr = (ulong *)item;
uint ofs;
ulong u;
if (size <= sizeof(*item))
return;
/* Upgrade the fill_pattern to change about half of the bits
* (to be sure to catch static flag corruption), and apply it.
*/
u = pch->fill_pattern += ~0UL / 3; // 0x55...55
ofs = sizeof(*item) / sizeof(*ptr);
while (ofs < size / sizeof(*ptr))
ptr[ofs++] = u;
}
/* check for a pool_cache_item integrity after extracting it from the cache. It
* must have been previously initialized using pool_fill_pattern(). If any
* corruption is detected, the function provokes an immediate crash.
*/
void pool_check_pattern(struct pool_cache_head *pch, struct pool_head *pool, struct pool_cache_item *item, const void *caller)
{
const ulong *ptr = (const ulong *)item;
uint size = pool->size;
uint ofs;
ulong u;
if (size <= sizeof(*item))
return;
/* let's check that all words past *item are equal */
ofs = sizeof(*item) / sizeof(*ptr);
u = ptr[ofs++];
while (ofs < size / sizeof(*ptr)) {
if (unlikely(ptr[ofs] != u)) {
pool_inspect_item("cache corruption detected", pool, item, caller, ofs * sizeof(*ptr));
ABORT_NOW();
}
ofs++;
}
}
/* removes up to <count> items from the end of the local pool cache <ph> for
* pool <pool>. The shared pool is refilled with these objects in the limit
* of the number of acceptable objects, and the rest will be released to the
* OS. It is not a problem is <count> is larger than the number of objects in
* the local cache. The counters are automatically updated. Must not be used
* with pools disabled.
*/
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
{
struct pool_cache_item *item;
struct pool_item *pi, *head = NULL;
void *caller = __builtin_return_address(0);
uint released = 0;
uint cluster = 0;
uint to_free_max;
uint bucket;
uint used;
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
/* Note: this will be zero when global pools are disabled */
to_free_max = pool_releasable(pool);
while (released < count && !LIST_ISEMPTY(&ph->list)) {
item = LIST_PREV(&ph->list, typeof(item), by_pool);
BUG_ON(&item->by_pool == &ph->list);
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
pool_check_pattern(ph, pool, item, caller);
LIST_DELETE(&item->by_pool);
LIST_DELETE(&item->by_lru);
bucket = pool_pbucket(item);
used = _HA_ATOMIC_SUB_FETCH(&pool->buckets[bucket].used, 1);
swrate_add_opportunistic(&pool->buckets[bucket].needed_avg, POOL_AVG_SAMPLES, used);
if (to_free_max > released || cluster) {
/* will never match when global pools are disabled */
pi = (struct pool_item *)item;
pi->next = NULL;
pi->down = head;
head = pi;
cluster++;
if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
/* enough to make a cluster */
pool_put_to_shared_cache(pool, head);
cluster = 0;
head = NULL;
}
} else {
/* does pool_free_nocache() with a known bucket */
_HA_ATOMIC_DEC(&pool->buckets[bucket].allocated);
pool_put_to_os_nodec(pool, item);
}
released++;
}
/* incomplete cluster left */
if (cluster)
pool_put_to_shared_cache(pool, head);
ph->count -= released;
pool_cache_count -= released;
pool_cache_bytes -= released * pool->size;
}
/* Evicts some of the oldest objects from one local cache, until its number of
* objects is no more than 16+1/8 of the total number of locally cached objects
* or the total size of the local cache is no more than 75% of its maximum (i.e.
* we don't want a single cache to use all the cache for itself). For this, the
* list is scanned in reverse. If <full> is non-null, all objects are evicted.
* Must not be used when pools are disabled.
*/
void pool_evict_from_local_cache(struct pool_head *pool, int full)
{
struct pool_cache_head *ph = &pool->cache[tid];
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
while ((ph->count && full) ||
(ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
ph->count >= 16 + pool_cache_count / 8 &&
pool_cache_bytes > global.tune.pool_cache_size * 3 / 4)) {
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
}
}
/* Evicts some of the oldest objects from the local cache, pushing them to the
* global pool. Must not be used when pools are disabled.
*/
void pool_evict_from_local_caches()
{
struct pool_cache_item *item;
struct pool_cache_head *ph;
struct pool_head *pool;
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
do {
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
BUG_ON(&item->by_lru == &th_ctx->pool_lru_head);
/* note: by definition we remove oldest objects so they also are the
* oldest in their own pools, thus their next is the pool's head.
*/
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
BUG_ON(ph->tid != tid);
pool = container_of(ph - tid, struct pool_head, cache);
BUG_ON(pool != ph->pool);
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
} while (pool_cache_bytes > global.tune.pool_cache_size * 7 / 8);
}
/* Frees an object to the local cache, possibly pushing oldest objects to the
* shared cache, which itself may decide to release some of them to the OS.
* While it is unspecified what the object becomes past this point, it is
* guaranteed to be released from the users' perspective. A caller address may
* be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not
* be used with pools disabled.
*/
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
{
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
struct pool_cache_head *ph = &pool->cache[tid];
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
LIST_INSERT(&ph->list, &item->by_pool);
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
POOL_DEBUG_TRACE_CALLER(pool, item, caller);
ph->count++;
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
pool_fill_pattern(ph, item, pool->size);
pool_cache_count++;
pool_cache_bytes += pool->size;
if (unlikely(pool_cache_bytes > global.tune.pool_cache_size * 3 / 4)) {
if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
pool_evict_from_local_cache(pool, 0);
if (pool_cache_bytes > global.tune.pool_cache_size)
pool_evict_from_local_caches();
}
}
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
* This is only used when pools are in use and shared pools are enabled. No
* malloc() is attempted, and poisonning is never performed. The purpose is to
* get the fastest possible refilling so that the caller can easily check if
* the cache has enough objects for its use. Must not be used when pools are
* disabled.
*/
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
{
struct pool_cache_item *item;
struct pool_item *ret, *down;
uint bucket;
uint count;
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
/* we'll need to reference the first element to figure the next one. We
* must temporarily lock it so that nobody allocates then releases it,
* or the dereference could fail. In order to limit the locking,
* threads start from a bucket that depends on their ID.
*/
bucket = pool_tbucket();
ret = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
count = 0;
do {
/* look for an apparently non-busy entry. If we hit a busy pool
* we retry with another random bucket. And if we encounter a
* NULL, we retry once with another random bucket. This is in
* order to prevent object accumulation in other buckets.
*/
while (unlikely(ret == POOL_BUSY || (ret == NULL && count++ < 1))) {
bucket = statistical_prng() % CONFIG_HAP_POOL_BUCKETS;
ret = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
}
if (ret == NULL)
return;
} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->buckets[bucket].free_list, POOL_BUSY)) == POOL_BUSY));
if (unlikely(ret == NULL)) {
HA_ATOMIC_STORE(&pool->buckets[bucket].free_list, NULL);
return;
}
/* this releases the lock */
HA_ATOMIC_STORE(&pool->buckets[bucket].free_list, ret->next);
/* now store the retrieved object(s) into the local cache. Note that
* they don't all have the same hash and that it doesn't necessarily
* match the one from the pool.
*/
count = 0;
for (; ret; ret = down) {
down = ret->down;
item = (struct pool_cache_item *)ret;
POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
LIST_INSERT(&pch->list, &item->by_pool);
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
_HA_ATOMIC_INC(&pool->buckets[pool_pbucket(item)].used);
count++;
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
pool_fill_pattern(pch, item, pool->size);
}
pch->count += count;
pool_cache_count += count;
pool_cache_bytes += count * pool->size;
}
/* Adds pool item cluster <item> to the shared cache, which contains <count>
* elements. The caller is advised to first check using pool_releasable() if
* it's wise to add this series of objects there. Both the pool and the item's
* head must be valid.
*/
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item)
{
struct pool_item *free_list;
uint bucket = pool_pbucket(item);
/* we prefer to put the item into the entry that corresponds to its own
* hash so that on return it remains in the right place, but that's not
* mandatory.
*/
free_list = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
do {
/* look for an apparently non-busy entry */
while (unlikely(free_list == POOL_BUSY)) {
bucket = (bucket + 1) % CONFIG_HAP_POOL_BUCKETS;
free_list = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
}
_HA_ATOMIC_STORE(&item->next, free_list);
__ha_barrier_atomic_store();
} while (!_HA_ATOMIC_CAS(&pool->buckets[bucket].free_list, &free_list, item));
__ha_barrier_atomic_store();
}
/*
* This function frees whatever can be freed in pool <pool>.
*/
void pool_flush(struct pool_head *pool)
{
struct pool_item *next, *temp, *down;
uint bucket;
if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL)))
return;
/* The loop below atomically detaches the head of the free list and
* replaces it with a NULL. Then the list can be released.
*/
for (bucket = 0; bucket < CONFIG_HAP_POOL_BUCKETS; bucket++) {
next = pool->buckets[bucket].free_list;
while (1) {
while (unlikely(next == POOL_BUSY))
next = (void*)pl_wait_new_long((ulong*)&pool->buckets[bucket].free_list, (ulong)next);
if (next == NULL)
break;
next = _HA_ATOMIC_XCHG(&pool->buckets[bucket].free_list, POOL_BUSY);
if (next != POOL_BUSY) {
HA_ATOMIC_STORE(&pool->buckets[bucket].free_list, NULL);
break;
}
}
while (next) {
temp = next;
next = temp->next;
for (; temp; temp = down) {
down = temp->down;
_HA_ATOMIC_DEC(&pool->buckets[pool_pbucket(temp)].allocated);
pool_put_to_os_nodec(pool, temp);
}
}
}
/* here, we should have pool->allocated == pool->used */
}
/*
* This function frees whatever can be freed in all pools, but respecting
* the minimum thresholds imposed by owners. It makes sure to be alone to
* run by using thread_isolate(). <pool_ctx> is unused.
*/
void pool_gc(struct pool_head *pool_ctx)
{
struct pool_head *entry;
int isolated = thread_isolated();
if (!isolated)
thread_isolate();
list_for_each_entry(entry, &pools, list) {
struct pool_item *temp, *down;
uint allocated = pool_allocated(entry);
uint used = pool_used(entry);
int bucket = 0;
while ((int)(allocated - used) > (int)entry->minavail) {
/* ok let's find next entry to evict */
while (!entry->buckets[bucket].free_list && bucket < CONFIG_HAP_POOL_BUCKETS)
bucket++;
if (bucket >= CONFIG_HAP_POOL_BUCKETS)
break;
temp = entry->buckets[bucket].free_list;
entry->buckets[bucket].free_list = temp->next;
for (; temp; temp = down) {
down = temp->down;
allocated--;
_HA_ATOMIC_DEC(&entry->buckets[pool_pbucket(temp)].allocated);
pool_put_to_os_nodec(entry, temp);
}
}
}
trim_all_pools();
if (!isolated)
thread_release();
}
/*
* Returns a pointer to type <type> taken from the pool <pool_type> or
* dynamically allocated. In the first case, <pool_type> is updated to point to
* the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
* Prefer using pool_alloc() which does the right thing without flags.
*/
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
{
void *p = NULL;
void *caller = __builtin_return_address(0);
if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC))
if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))
return NULL;
if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p)
p = pool_get_from_cache(pool, caller);
if (unlikely(!p))
p = pool_alloc_nocache(pool, caller);
if (likely(p)) {
#ifdef USE_MEMORY_PROFILING
if (unlikely(profiling & HA_PROF_MEMORY)) {
extern struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1];
struct memprof_stats *bin;
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_ALLOC);
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, pool->size);
_HA_ATOMIC_STORE(&bin->info, pool);
/* replace the caller with the allocated bin: this way
* we'll the pool_free() call will be able to update our
* entry. We only do it for non-colliding entries though,
* since these ones store the true caller location.
*/
if (bin >= &memprof_stats[0] && bin < &memprof_stats[MEMPROF_HASH_BUCKETS])
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)p, bin);
}
#endif
if (unlikely(flags & POOL_F_MUST_ZERO))
memset(p, 0, pool->size);
else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON)))
memset(p, mem_poison_byte, pool->size);
}
return p;
}
/*
* Puts a memory area back to the corresponding pool. <ptr> be valid. Using
* pool_free() is preferred.
*/
void __pool_free(struct pool_head *pool, void *ptr)
{
const void *caller = __builtin_return_address(0);
/* we'll get late corruption if we refill to the wrong pool or double-free */
POOL_DEBUG_CHECK_MARK(pool, ptr, caller);
POOL_DEBUG_RESET_MARK(pool, ptr);
#ifdef USE_MEMORY_PROFILING
if (unlikely(profiling & HA_PROF_MEMORY) && ptr) {
extern struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1];
struct memprof_stats *bin;
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_FREE);
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, pool->size);
_HA_ATOMIC_STORE(&bin->info, pool);
/* check if the caller is an allocator, and if so, let's update
* its free() count.
*/
bin = *(struct memprof_stats**)(((char *)ptr) + pool->alloc_sz - sizeof(void*));
if (bin >= &memprof_stats[0] && bin < &memprof_stats[MEMPROF_HASH_BUCKETS]) {
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, pool->size);
}
}
#endif
if (unlikely((pool_debugging & POOL_DBG_NO_CACHE) ||
global.tune.pool_cache_size < pool->size)) {
pool_free_nocache(pool, ptr);
return;
}
pool_put_to_cache(pool, ptr, caller);
}
/*
* This function destroys a pool by freeing it completely, unless it's still
* in use. This should be called only under extreme circumstances. It always
* returns NULL if the resulting pool is empty, easing the clearing of the old
* pointer, otherwise it returns the pool.
* .
*/
void *pool_destroy(struct pool_head *pool)
{
if (pool) {
if (!(pool_debugging & POOL_DBG_NO_CACHE))
pool_evict_from_local_cache(pool, 1);
pool_flush(pool);
if (pool_used(pool))
return pool;
pool->users--;
if (!pool->users) {
/* remove all registrations at once */
struct pool_registration *reg, *back;
list_for_each_entry_safe(reg, back, &pool->regs, list) {
LIST_DELETE(&reg->list);
free(reg);
}
LIST_DELETE(&pool->list);
/* note that if used == 0, the cache is empty */
free(pool->base_addr);
}
/* make sure this pool is no longer referenced in memory profiling */
memprof_remove_stale_info(pool);
}
return NULL;
}
/* This destroys all pools on exit. It is *not* thread safe. */
void pool_destroy_all()
{
struct pool_head *entry, *back;
list_for_each_entry_safe(entry, back, &pools, list) {
/* there's only one occurrence of each pool in the list,
* and we're existing instead of looping on the whole
* list just to decrement users, force it to 1 here.
*/
entry->users = 1;
pool_destroy(entry);
}
}
/* carefully inspects an item upon fatal error and emit diagnostics.
* If ofs < 0, no hint is provided regarding the content location. However if
* ofs >= 0, then we also try to inspect around that place where corruption
* was detected.
*/
void pool_inspect_item(const char *msg, struct pool_head *pool, const void *item, const void *caller, ssize_t ofs)
{
const struct pool_head *the_pool = NULL;
chunk_printf(&trash,
"FATAL: pool inconsistency detected in thread %d: %s.\n"
" caller: %p (",
tid + 1, msg, caller);
resolve_sym_name(&trash, NULL, caller);
chunk_appendf(&trash,
")\n"
" item: %p\n"
" pool: %p ('%s', size %u, real %u, users %u)\n",
item, pool, pool->name, pool->size, pool->alloc_sz, pool->users);
if (ofs >= 0) {
chunk_printf(&trash, "Contents around first corrupted address relative to pool item:.\n");
dump_area_with_syms(&trash, item, item + ofs, NULL, NULL, NULL);
}
if (pool_debugging & POOL_DBG_TAG) {
const void **pool_mark;
struct pool_head *ph;
const void *tag;
pool_mark = (const void **)(((char *)item) + pool->size);
tag = may_access(pool_mark) ? *pool_mark : NULL;
if (tag == pool) {
chunk_appendf(&trash, " tag: @%p = %p (%s)\n", pool_mark, tag, pool->name);
the_pool = pool;
}
else {
if (!may_access(pool_mark))
chunk_appendf(&trash, "Tag not accessible. ");
else
chunk_appendf(&trash, "Tag does not match (%p). ", tag);
list_for_each_entry(ph, &pools, list) {
pool_mark = (const void **)(((char *)item) + ph->size);
if (!may_access(pool_mark))
continue;
tag = *pool_mark;
if (tag == ph) {
if (!the_pool)
chunk_appendf(&trash, "Possible origin pool(s):\n");
chunk_appendf(&trash, " tag: @%p = %p (%s, size %u, real %u, users %u)\n",
pool_mark, tag, ph->name, ph->size, ph->alloc_sz, ph->users);
if (!the_pool || the_pool->size < ph->size)
the_pool = ph;
}
}
if (!the_pool) {
chunk_appendf(&trash,
"Tag does not match any other pool.\n");
pool_mark = (const void **)(((char *)item) + pool->size);
if (resolve_sym_name(&trash, "Resolving the tag as a pool_free() location: ", *pool_mark))
chunk_appendf(&trash, "\n");
else
chunk_appendf(&trash, " (no match).\n");
dump_area_with_syms(&trash, item, pool_mark, pool, "pool", pool->name);
}
}
}
if (pool_debugging & POOL_DBG_CALLER) {
struct buffer *trash2 = get_trash_chunk();
const struct pool_head *ph;
const void **pool_mark;
const void *tag, *rec_tag;
ph = the_pool ? the_pool : pool;
pool_mark = (const void **)(((char *)item) + ph->alloc_sz - sizeof(void*));
rec_tag = may_access(pool_mark) ? *pool_mark : NULL;
if (rec_tag && resolve_sym_name(trash2, NULL, rec_tag))
chunk_appendf(&trash,
"Recorded caller if pool '%s':\n @%p (+%04u) = %p (%s)\n",
ph->name, pool_mark, (uint)(ph->alloc_sz - sizeof(void*)),
rec_tag, trash2->area);
if (!the_pool) {
/* the pool couldn't be formally verified */
chunk_appendf(&trash, "Other possible callers:\n");
list_for_each_entry(ph, &pools, list) {
if (ph == pool)
continue;
pool_mark = (const void **)(((char *)item) + ph->alloc_sz - sizeof(void*));
if (!may_access(pool_mark))
continue;
tag = *pool_mark;
if (tag == rec_tag)
continue;
/* see if we can resolve something */
chunk_printf(trash2, "@%p (+%04u) = %p (", pool_mark, (uint)(ph->alloc_sz - sizeof(void*)), tag);
if (resolve_sym_name(trash2, NULL, tag)) {
chunk_appendf(trash2, ")");
chunk_appendf(&trash,
" %s [as pool %s, size %u, real %u, users %u]\n",
trash2->area, ph->name, ph->size, ph->alloc_sz, ph->users);
}
}
}
}
chunk_appendf(&trash, "\n");
DISGUISE(write(2, trash.area, trash.data));
}
/* used by qsort in "show pools" to sort by name */
static int cmp_dump_pools_name(const void *a, const void *b)
{
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
return strcmp(l->entry->name, r->entry->name);
}
/* used by qsort in "show pools" to sort by item size */
static int cmp_dump_pools_size(const void *a, const void *b)
{
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
if (l->entry->size > r->entry->size)
return -1;
else if (l->entry->size < r->entry->size)
return 1;
else
return 0;
}
/* used by qsort in "show pools" to sort by usage */
static int cmp_dump_pools_usage(const void *a, const void *b)
{
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
if (l->alloc_bytes > r->alloc_bytes)
return -1;
else if (l->alloc_bytes < r->alloc_bytes)
return 1;
else
return 0;
}
/* will not dump more than this number of entries. Anything beyond this will
* likely not fit into a regular output buffer anyway.
*/
#define POOLS_MAX_DUMPED_ENTRIES 1024
/* This function dumps memory usage information into the trash buffer.
* It may sort by a criterion if bits 0..3 of <how> are non-zero, and
* limit the number of output lines if <max> is non-zero. It may limit
* only to pools whose names start with <pfx> if <pfx> is non-null.
*/
void dump_pools_to_trash(int how, int max, const char *pfx)
{
struct pool_dump_info pool_info[POOLS_MAX_DUMPED_ENTRIES];
struct pool_head *entry;
unsigned long long allocated, used;
int nbpools, i;
unsigned long long cached_bytes = 0;
uint cached = 0;
uint alloc_items;
int by_what = how & 0xF; // bits 0..3 = sorting criterion
int detailed = !!(how & 0x10); // print details
allocated = used = nbpools = 0;
list_for_each_entry(entry, &pools, list) {
if (nbpools >= POOLS_MAX_DUMPED_ENTRIES)
break;
alloc_items = pool_allocated(entry);
/* do not dump unused entries when sorting by usage */
if (by_what == 3 && !alloc_items)
continue;
/* verify the pool name if a prefix is requested */
if (pfx && strncmp(entry->name, pfx, strlen(pfx)) != 0)
continue;
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
for (cached = i = 0; i < global.nbthread; i++)
cached += entry->cache[i].count;
}
pool_info[nbpools].entry = entry;
pool_info[nbpools].alloc_items = alloc_items;
pool_info[nbpools].alloc_bytes = (ulong)entry->size * alloc_items;
pool_info[nbpools].used_items = pool_used(entry);
pool_info[nbpools].cached_items = cached;
pool_info[nbpools].need_avg = swrate_avg(pool_needed_avg(entry), POOL_AVG_SAMPLES);
pool_info[nbpools].failed_items = pool_failed(entry);
nbpools++;
}
if (by_what == 1) /* sort by name */
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_name);
else if (by_what == 2) /* sort by item size */
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_size);
else if (by_what == 3) /* sort by total usage */
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_usage);
chunk_printf(&trash, "Dumping pools usage");
if (!max || max >= POOLS_MAX_DUMPED_ENTRIES)
max = POOLS_MAX_DUMPED_ENTRIES;
if (nbpools >= max)
chunk_appendf(&trash, " (limited to the first %u entries)", max);
chunk_appendf(&trash, ". Use SIGQUIT to flush them.\n");
for (i = 0; i < nbpools && i < max; i++) {
chunk_appendf(&trash, " - Pool %s (%lu bytes) : %lu allocated (%lu bytes), %lu used"
" (~%lu by thread caches)"
", needed_avg %lu, %lu failures, %u users, @%p%s\n",
pool_info[i].entry->name, (ulong)pool_info[i].entry->size,
pool_info[i].alloc_items, pool_info[i].alloc_bytes,
pool_info[i].used_items, pool_info[i].cached_items,
pool_info[i].need_avg, pool_info[i].failed_items,
pool_info[i].entry->users, pool_info[i].entry,
(pool_info[i].entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
cached_bytes += pool_info[i].cached_items * (ulong)pool_info[i].entry->size;
allocated += pool_info[i].alloc_items * (ulong)pool_info[i].entry->size;
used += pool_info[i].used_items * (ulong)pool_info[i].entry->size;
if (detailed) {
struct pool_registration *reg;
list_for_each_entry(reg, &pool_info[i].entry->regs, list)
chunk_appendf(&trash, " > %-12s: size=%u flags=%#x align=%u\n", reg->name, reg->size, reg->flags, reg->align);
}
}
chunk_appendf(&trash, "Total: %d pools, %llu bytes allocated, %llu used"
" (~%llu by thread caches)"
".\n",
nbpools, allocated, used, cached_bytes
);
}
/* Dump statistics on pools usage. */
void dump_pools(void)
{
dump_pools_to_trash(0, 0, NULL);
qfprintf(stderr, "%s", trash.area);
}
/* This function returns the total number of failed pool allocations */
int pool_total_failures()
{
struct pool_head *entry;
int failed = 0;
list_for_each_entry(entry, &pools, list)
failed += pool_failed(entry);
return failed;
}
/* This function returns the total amount of memory allocated in pools (in bytes) */
unsigned long long pool_total_allocated()
{
struct pool_head *entry;
unsigned long long allocated = 0;
list_for_each_entry(entry, &pools, list)
allocated += pool_allocated(entry) * (ullong)entry->size;
return allocated;
}
/* This function returns the total amount of memory used in pools (in bytes) */
unsigned long long pool_total_used()
{
struct pool_head *entry;
unsigned long long used = 0;
list_for_each_entry(entry, &pools, list)
used += pool_used(entry) * (ullong)entry->size;
return used;
}
/* This function parses a string made of a set of debugging features as
* specified after -dM on the command line, and will set pool_debugging
* accordingly. On success it returns a strictly positive value. It may zero
* with the first warning in <err>, -1 with a help message in <err>, or -2 with
* the first error in <err> return the first error in <err>. <err> is undefined
* on success, and will be non-null and locally allocated on help/error/warning.
* The caller must free it. Warnings are used to report features that were not
* enabled at build time, and errors are used to report unknown features.
*/
int pool_parse_debugging(const char *str, char **err)
{
struct ist args;
char *end;
uint new_dbg;
int v;
/* if it's empty or starts with a number, it's the mem poisonning byte */
v = strtol(str, &end, 0);
if (!*end || *end == ',') {
mem_poison_byte = *str ? v : 'P';
if (mem_poison_byte >= 0)
pool_debugging |= POOL_DBG_POISON;
else
pool_debugging &= ~POOL_DBG_POISON;
str = end;
}
new_dbg = pool_debugging;
for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) {
struct ist feat = iststop(args, ',');
if (!istlen(feat))
continue;
if (isteq(feat, ist("help"))) {
ha_free(err);
memprintf(err,
"-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n"
"value may be appended immediately after -dM to use another value (0 supported).\n"
"Then an optional list of comma-delimited keywords may be appended to set or\n"
"clear some debugging options ('*' marks the current setting):\n\n"
" set clear description\n"
" -----------------+-----------------+-----------------------------------------\n");
for (v = 0; dbg_options[v].flg; v++) {
memprintf(err, "%s %c %-15s|%c %-15s| %s\n",
*err,
(pool_debugging & dbg_options[v].flg) ? '*' : ' ',
dbg_options[v].set,
(pool_debugging & dbg_options[v].flg) ? ' ' : '*',
dbg_options[v].clr,
dbg_options[v].hlp);
}
memprintf(err,
"%s -----------------+-----------------+-----------------------------------------\n"
"Examples:\n"
" Disable merging and enable poisonning with byte 'P': -dM0x50,no-merge\n"
" Randomly fail allocations: -dMfail\n"
" Detect out-of-bound corruptions: -dMno-merge,tag\n"
" Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n"
" Detect all cache corruptions: -dMno-merge,cold-first,integrity,tag,caller\n"
" Detect UAF (disables cache, very slow): -dMuaf\n"
" Detect post-cache UAF: -dMuaf,cache,no-merge,cold-first,integrity,tag,caller\n"
" Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n",
*err);
return -1;
}
for (v = 0; dbg_options[v].flg; v++) {
if (isteq(feat, ist(dbg_options[v].set))) {
new_dbg |= dbg_options[v].flg;
/* UAF implicitly disables caching, but it's
* still possible to forcefully re-enable it.
*/
if (dbg_options[v].flg == POOL_DBG_UAF)
new_dbg |= POOL_DBG_NO_CACHE;
/* fail should preset the tune.fail-alloc ratio to 1% */
if (dbg_options[v].flg == POOL_DBG_FAIL_ALLOC)
mem_fail_rate = 1;
break;
}
else if (isteq(feat, ist(dbg_options[v].clr))) {
new_dbg &= ~dbg_options[v].flg;
/* no-fail should reset the tune.fail-alloc ratio */
if (dbg_options[v].flg == POOL_DBG_FAIL_ALLOC)
mem_fail_rate = 0;
break;
}
}
if (!dbg_options[v].flg) {
memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat));
return -2;
}
}
pool_debugging = new_dbg;
return 1;
}
/* parse a "show pools" command. It returns 1 on failure, 0 if it starts to dump. */
static int cli_parse_show_pools(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_pools_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg;
for (arg = 2; *args[arg]; arg++) {
if (strcmp(args[arg], "byname") == 0) {
ctx->how = (ctx->how & ~0xF) | 1; // sort output by name
}
else if (strcmp(args[arg], "bysize") == 0) {
ctx->how = (ctx->how & ~0xF) | 2; // sort output by item size
}
else if (strcmp(args[arg], "byusage") == 0) {
ctx->how = (ctx->how & ~0xF) | 3; // sort output by total allocated size
}
else if (strcmp(args[arg], "detailed") == 0) {
ctx->how |= 0x10; // print detailed registrations
}
else if (strcmp(args[arg], "match") == 0 && *args[arg+1]) {
ctx->prefix = strdup(args[arg+1]); // only pools starting with this
if (!ctx->prefix)
return cli_err(appctx, "Out of memory.\n");
arg++;
}
else if (isdigit((unsigned char)*args[arg])) {
ctx->maxcnt = atoi(args[arg]); // number of entries to dump
}
else
return cli_err(appctx, "Expects either 'byname', 'bysize', 'byusage', 'match <pfx>', 'detailed', or a max number of output lines.\n");
}
return 0;
}
/* release the "show pools" context */
static void cli_release_show_pools(struct appctx *appctx)
{
struct show_pools_ctx *ctx = appctx->svcctx;
ha_free(&ctx->prefix);
}
/* This function dumps memory usage information onto the stream connector's
* read buffer. It returns 0 as long as it does not complete, non-zero upon
* completion. No state is used.
*/
static int cli_io_handler_dump_pools(struct appctx *appctx)
{
struct show_pools_ctx *ctx = appctx->svcctx;
dump_pools_to_trash(ctx->how, ctx->maxcnt, ctx->prefix);
if (applet_putchk(appctx, &trash) == -1)
return 0;
return 1;
}
/* callback used to create early pool <name> of size <size> and store the
* resulting pointer into <ptr>. If the allocation fails, it quits with after
* emitting an error message.
*/
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
{
*ptr = create_pool(name, size, MEM_F_SHARED);
if (!*ptr) {
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
name, size, strerror(errno));
exit(1);
}
}
/* Initializes all per-thread arrays on startup */
static void init_pools()
{
int thr;
for (thr = 0; thr < MAX_THREADS; thr++) {
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
}
detect_allocator();
}
INITCALL0(STG_PREPARE, init_pools);
/* Report in build options if trim is supported */
static void pools_register_build_options(void)
{
if (!using_default_allocator) {
char *ptr = NULL;
memprintf(&ptr, "Running with a replaced memory allocator (e.g. via LD_PRELOAD).");
hap_register_build_opts(ptr, 1);
mark_tainted(TAINTED_REPLACED_MEM_ALLOCATOR);
}
}
INITCALL0(STG_REGISTER, pools_register_build_options);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "pools", NULL }, "show pools [by*] [match <pfx>] [nb] : report information about the memory pools usage", cli_parse_show_pools, cli_io_handler_dump_pools, cli_release_show_pools },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* config parser for global "tune.fail-alloc" */
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
mem_fail_rate = atoi(args[1]);
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
return -1;
}
return 0;
}
/* config parser for global "tune.memory.hot-size" */
static int mem_parse_global_hot_size(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
long size;
if (too_many_args(1, args, err, NULL))
return -1;
size = atol(args[1]);
if (size <= 0) {
memprintf(err, "'%s' expects a strictly positive value.", args[0]);
return -1;
}
global.tune.pool_cache_size = size;
return 0;
}
/* config parser for global "no-memory-trimming" */
static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(0, args, err, NULL))
return -1;
disable_trim = 1;
return 0;
}
/* register global config keywords */
static struct cfg_kw_list mem_cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
{ CFG_GLOBAL, "tune.memory.hot-size", mem_parse_global_hot_size },
{ CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/