handler for 3C90x and 3C90xB/C respectively. This simplifies ioctl
handler as well as enhancing readability.
While I'm here don't reprogram multicast filter when driver is not
running.
this there is a rare return path that bogusly appears
to fail when it should not. Also white space correction.
Thanks to Arnaud Lacombe for noticing the problem.
cpuset_t objects.
That is going to offer the underlying support for a simple bump of
MAXCPU and then support for number of cpus > 32 (as it is today).
Right now, cpumask_t is an int, 32 bits on all our supported architecture.
cpumask_t on the other side is implemented as an array of longs, and
easilly extendible by definition.
The architectures touched by this commit are the following:
- amd64
- i386
- pc98
- arm
- ia64
- XEN
while the others are still missing.
Userland is believed to be fully converted with the changes contained
here.
Some technical notes:
- This commit may be considered an ABI nop for all the architectures
different from amd64 and ia64 (and sparc64 in the future)
- per-cpu members, which are now converted to cpuset_t, needs to be
accessed avoiding migration, because the size of cpuset_t should be
considered unknown
- size of cpuset_t objects is different from kernel and userland (this is
primirally done in order to leave some more space in userland to cope
with KBI extensions). If you need to access kernel cpuset_t from the
userland please refer to example in this patch on how to do that
correctly (kgdb may be a good source, for example).
- Support for other architectures is going to be added soon
- Only MAXCPU for amd64 is bumped now
The patch has been tested by sbruno and Nicholas Esborn on opteron
4 x 12 pack CPUs. More testing on big SMP is expected to came soon.
pluknet tested the patch with his 8-ways on both amd64 and i386.
Tested by: pluknet, sbruno, gianni, Nicholas Esborn
Reviewed by: jeff, jhb, sbruno
Quoting the ath9k commit message:
At present the noise floor calibration is processed in supported
control and extension chains rather than required chains.
Unnccesarily doing nfcal in all supported chains leads to
invalid nf readings on extn chains and these invalid values
got updated into history buffer. While loading those values
from history buffer is moving the chip to deaf state.
This issue was observed in AR9002/AR9003 chips while doing
associate/dissociate in HT40 mode and interface up/down
in iterative manner. After some iterations, the chip was moved
to deaf state. Somehow the pci devices are recovered by poll work
after chip reset. Raading the nf values in all supported extension chains
when the hw is not yet configured in HT40 mode results invalid values.
Reference: https://patchwork.kernel.org/patch/753862/
Obtained from: Linux ath9k
The checks should function as follows:
* AR_SREV_<silicon> : check macVersion matches that version id
* AR_SREV_<silicon>_<revision> : check macVersion and macRevision match
the version / revision respectively
* AR_SREV_<silicon>_<revision>_OR_LATER: check that
+ if the chip silicon version == macVersion, enforce revision >= macRevision
+ if the chip silicon version > macVersion, allow it.
For example, AR_SREV_MERLIN() only matches AR9280 (any revision),
AR_SREV_MERLIN_10() would only match AR9280 version 1.0, but
AR_SREV_MERLIN_20_OR_LATER() matches AR9280 version >= 2.0 _AND_
any subsequent MAC (So AR9285, AR9287, etc.)
The specific fixes which may impact users:
* if there is Merlin hardware > revision 2.0, it'll now be correctly
matched by AR_SREV_MERLIN_20_OR_LATER() - the older code simply
would match on either Merlin 2.0 or a subsequent MAC (AR9285, AR9287, etc.)
* Kite version 1.1/1.2 should now correctly match. As these macros
are used in the AR9285 reset/attach path, and it's assumed that the
hardware is kite anyway, the behaviour shouldn't change. It'll only
change if these macros are used in other codepaths shared with
older silicon.
Obtained from: Linux ath9k, Atheros
Reference code that shows how to get a packet's timestamp out of
cxgbe(4). Disabled by default because we don't have a standard way
today to pass this information up the stack.
The timestamp is 60 bits wide and each increment represents 1 tick of
the T4's core clock. As an example, the timestamp granularity is ~4.4ns
for this card:
# sysctl dev.t4nex.0.core_clock
dev.t4nex.0.core_clock: 228125
MFC after: 1 week
- Enable 5-tuple and every-packet lookup.
- Setup the default filter mode to allow filtering/steering based on IP
protocol, ingress port, inner VLAN ID, IP frag, FCoE, and MPS match
type; all combined together. You can also filter based on MAC index,
Ethernet type, IP TOS/IPv6 Traffic Class, and outer VLAN ID but you'll
have to modify the default filter mode and exclude some of the
match-fields in it.
IPv4 and IPv6 SIP/DIP/SPORT/DPORT are always available in all filter
rules.
- Add driver ioctls to get/set the global filter mode.
- Add driver ioctls to program and delete hardware filters. A couple of
the "switch" actions that rewrite Ethernet and VLAN information and
switch the packet out of another port may not work as the L2 code is not
yet in place. Everything else, including all "drop" and "pass" rules
with RSS or absolute qid, should work.
Obtained from: Chelsio Communications
have similar hardware features of BCM5718 family except the number
of receive return ring is 4. The BCM57765 family is known to
support IEEE 802.3az EEE(Energy Efficient Ethernet) but this change
does not include EEE support code. I hope EEE is implemented in
near future.
This change will support BCM57761, BCM57765, BCM57781, BCM57785,
BCM57791 and BCM57795. All hardware offloading features are
supported and suspend/resume also should work.
Many thanks to Broadcom for continuing support of FreeBSD.
Tested by: Paul Thornton (prt <> prt dot org)
HW donated by: Broadcom
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
driver would verify that requests for child devices were confined to any
existing I/O windows, but the driver relied on the firmware to initialize
the windows and would never grow the windows for new requests. Now the
driver actively manages the I/O windows.
This is implemented by allocating a bus resource for each I/O window from
the parent PCI bus and suballocating that resource to child devices. The
suballocations are managed by creating an rman for each I/O window. The
suballocated resources are mapped by passing the bus_activate_resource()
call up to the parent PCI bus. Windows are grown when needed by using
bus_adjust_resource() to adjust the resource allocated from the parent PCI
bus. If the adjust request succeeds, the window is adjusted and the
suballocation request for the child device is retried.
When growing a window, the rman_first_free_region() and
rman_last_free_region() routines are used to determine if the front or
end of the existing I/O window is free. From using that, the smallest
ranges that need to be added to either the front or back of the window
are computed. The driver will first try to grow the window in whichever
direction requires the smallest growth first followed by the other
direction if that fails.
Subtractive bridges will first attempt to satisfy requests for child
resources from I/O windows (including attempts to grow the windows). If
that fails, the request is passed up to the parent PCI bus directly
however.
The PCI-PCI bridge driver will try to use firmware-assigned ranges for
child BARs first and only allocate a "fresh" range if that specific range
cannot be accommodated in the I/O window. This allows systems where the
firmware assigns resources during boot but later wipes the I/O windows
(some ACPI BIOSen are known to do this) to "rediscover" the original I/O
window ranges.
The ACPI Host-PCI bridge driver has been adjusted to correctly honor
hw.acpi.host_mem_start and the I/O port equivalent when a PCI-PCI bridge
makes a wildcard request for an I/O window range.
The new PCI-PCI bridge driver is only enabled if the NEW_PCIB kernel option
is enabled. This is a transition aide to allow platforms that do not
yet support bus_activate_resource() and bus_adjust_resource() in their
Host-PCI bridge drivers (and possibly other drivers as needed) to use the
old driver for now. Once all platforms support the new driver, the
kernel option and old driver will be removed.
PR: kern/143874 kern/149306
Tested by: mav
Rationale:
- unlike current behavior this seems to be compliant with OSS
specification:
http://manuals.opensound.com/developer/SNDCTL_DSP_GETIPTR.html
- this seems to meet expectations of some OSS programs compiled for or
ported from Linux, e.g. ALSA OSS plugin
- this doesn't seem to break any programs as far as current testing
shows
Tested by: nox, hselasky
MFC after: 4 days
sectors with all-zeroes.
The zeroes come from a static buffer; null(4) uses a dynamic buffer for
the same purpose (for /dev/zero). It might be a good idea to have a
static, shared, read-only all-zeroes page somewhere in the kernel that
md(4), null(4) and any other code that needs zeroes could use.
Reviewed by: kib
MFC after: 3 weeks
constraints on the rman and reject attempts to manage a region that is out
of range.
- Fix various places that set rm_end incorrectly (to ~0 or ~0u instead of
~0ul).
- To preserve existing behavior, change rman_init() to set rm_start and
rm_end to allow managing the full range (0 to ~0ul) if they are not set by
the caller when rman_init() is called.
For these devices, the number of supported ports is read from a register
in BAR 0.
PR: kern/134878
Submitted by: David Wood david of wood2 org uk
MFC after: 1 week
The AR9130 is an AR9160/AR5416 family WMAC which is glued directly
to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe
bridge.
The specifics:
* A new build option is required to use the AR9130 - AH_SUPPORT_AR9130.
This is needed due to the different location the RTC registers live
with this chip; hopefully this will be undone in the future.
This does currently mean that enabling this option will break non-AR9130
builds, so don't enable it unless you're specifically building an image
for the AR913x SoC.
* Add the new probe, attach, EEPROM and PLL methods specific to Howl.
* Add a work-around to ah_eeprom_v14.c which disables some of the checks
for endian-ness and magic in the EEPROM image if an eepromdata block
is provided. This'll be fixed at a later stage by porting the ath9k
probe code and making sure it doesn't break in other setups (which
my previous attempt at this did.)
* Sprinkle Howl modifications throughput the interrupt path - it doesn't
implement the SYNC interrupt registers, so ignore those.
* Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods
were
* Sprinkle some other Howl workarounds in the reset path.
* Hard-code an alternative setup for the AR_CFG register for Howl, that
sets up things suitable for Big-Endian MIPS (which is the only platform
this chip is glued to.)
This has been tested on the AR913x based TP-Link WR-1043nd mode, in
legacy, HT/20 and HT/40 modes.
Caveats:
* 2ghz has only been tested. I've not seen any 5ghz radios glued to this
chipset so I can't test it.
* AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least,
it isn't implemented in ath9k. Please don't enable this.
* This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
allocated, not the maximum number of messages the device supports. The
spec only requires the former, and I believe I implemented the latter due
to misunderstanding an e-mail. In particular, this fixes an issue where
having several devices that all support 16 messages can run out of
IDT vectors on x86 even though the driver only uses a single message.
Submitted by: Bret Ketchum bcketchum of gmail
MFC after: 1 week
adding appropriate #ifdefs. For module builds the framework needs
adjustments for at least carp.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 4 days
the watchdog, via the watchdog(9) interface.
For that, the WD_LASTVAL bitwise operation is used. It is mutually
exclusive with any explicit timout passing to the watchdogs.
The last timeout can be returned via the wdog_kern_last_timeout()
KPI.
- Add the possibility to pat the watchdogs installed via the watchdog(9)
interface from the kernel.
In order to do that the new KPI wdog_kern_pat() is offered and it does
accept normalized nanoseconds or WD_LASTVAL.
- Avoid to pass WD_ACTIVE down in the watchdog handlers. All the control
bit processing should over to the upper layer functions and not passed
down to the handlers at all.
These changes are intended to be used in order to fix up the watchdog
tripping in situation when the userland is busted, but protection is still
wanted (examples: shutdown syncing / disk dumping).
Sponsored by: Sandvine Incorporated
Reviewed by: emaste, des, cognet
MFC after: 2 weeks
will generate a short terminated USB transfer if
the maximum NCM frame size is greater than what
the driver can handle.
Reported by: Matthias Benesch
MFC after: 7 days
Approved by: thompsa (mentor)
- Also a couple minor tweaks to the TX code from the same source.
- Add the INET ioctl code which has been missing from this driver,
and which caused IP aliases to reset the interface.
- Last, some minor logic changes that just reflect upcoming
hardware support, but have no other functional effect now.
MFC after a week
Writing the TX power registers is the same between all of these chips
and later NICs (AR9287, AR9271 USB, etc.) so this will reduce code
duplication when those NICs are added to the HAL.
spurious (and fatal) interrupt errors.
One user reported seeing this:
Apr 22 18:04:24 ceres kernel: ar5416GetPendingInterrupts: fatal error,
ISR_RAC 0x0 SYNC_CAUSE 0x2000
SYNC_CAUSE of 0x2000 is AR_INTR_SYNC_LOCAL_TIMEOUT which is a bus timeout;
this shouldn't cause HAL_INT_FATAL to be set.
After checking out ath9k, ath9k_ar9002_hw_get_isr() clears (*masked)
before continuing, regardless of whether any bits in the ISR registers
are set. So if AR_INTR_SYNC_CAUSE is set to something that isn't
treated as fatal, and AR_ISR isn't read or is read and is 0, then
(*masked) wouldn't be cleared. Thus any of the existing bits set
that were passed in would be preserved in the output.
The caller in if_ath - ath_intr() - wasn't setting the masked value
to 0 before calling ath_hal_getisr(), so anything that was present
in that uninitialised variable would be preserved in the case above
of AR_ISR=0, AR_INTR_SYNC_CAUSE != 0; and if the HAL_INT_FATAL bit
was set, a fatal condition would be interpreted and the chip was
reset.
This patch does the following:
* ath_intr() - set masked to 0 before calling ath_hal_getisr();
* ar5416GetPendingInterrupts() - clear (*masked) before processing
continues; so if the interrupt source is AR_INTR_SYNC_CAUSE
and it isn't fatal, the hardware isn't reset via returning
HAL_INT_FATAL.
This doesn't fix any underlying errors which trigger
AR_INTR_SYNC_LOCAL_TIMEOUT - which is a bus timeout of some
sort - so that likely should be further investigated.
- Centralize PCI resource allocation/release.
- Enable flowid (TSS) support.
- Added "per-fastpath" locks and watchdog timeouts.
- Fixed problem where the CQ producer index was advanced beyond
the size of the CQ ring during initialization.
- Replaced hard-coded debug levels in some debug print statements.
- More style(9) fixes.
MFC after: Two weeks
should respond with all zeroes to any access to slave registers. Test with
PATA devices confirmed such behavior. Unluckily, Intel SATA controllers in
legacy emulation mode behave differently, not making any difference between
ATA and ATAPI devices. It causes false positive slave device detection and,
as result, command timeouts.
To workaround this problem, mask result of legacy-emulated soft-reset with
the device presence information received from the SATA-specific registers.
- TCO_MESSAGEx: TCO specific regs providing the ability to monitor BIOS
bootup activity.
- TCO_NEWCENTURY: reporting RTC year roll over.
- TCO_NMI2SMI_EN, TCO_NMI_NOW: controlling SMIs conversion to NMIs and
NMI trigger.
- SMI_GBL_EN: Enabling SMI delivery for all the northbridge controller.
MFC after: 10 days
This improves hard-reset and hot-plug on these ports.
- Device with ID 0x29218086 is a 2-port variant of ICH9 in legacy mode.
Skip probing for nonexistent slave devices there.
It allows to avoid false positive device detection under Xen, that caused
long probe delays due to subsequent IDENTIFY command timeouts.
MFC after: 1 month
that could have allowed the hardware pidx to reach the cidx even though
the freelist isn't empty. (Haven't actually seen this but it was there
waiting to happen..)
MFC after: 1 week
now a suitable base for all kinds of egress queues.
- Add control queues (sge_ctrlq) and allocate one of these per hardware
channel. They can be used to program filters and steer traffic (and
more).
MFC after: 1 week
- If a ENH_SENS TLV section exit the firmware is capable of doing
enhanced sensitivity calibration.
- Newer devices/firmwares have more calibration commands therefore
hardcoding the noise gain/reset commands no longer works. It is
supposed to use the next index after the newest calibration type
support. Read the command index of the TLV section if available.
This support has not worked for several years, and is not likely to work
again, unless Intel decides to release a native FreeBSD version of their
compiler. ;)
It's also marked inactive by the initvals, and enabled after
the baseband/PLL has been configured, but before the RF
registers have been programmed.
The origin and reason for this particular change is currently unknown.
Obtained from: Linux ath9k
- 6000 series devices need enhanced sensitivity calibration.
- 6000 series devices need a different setting for the shadow reg.
- set the IWN_FLAG_HAS_11N bit if the EEPROM says the device has 11n
support.
Obtained from: OpenBSD
Antenna diversity on the >= AR5416 is implemented differently than the
AR5212 and previous chips. So for now, and not to confuse things, just
disable it for now.
- read RSSI only for the active chains
- cast RSSI/NF to int8_t before passing it up to radiotap
- remove the htole64() for the timestamp
Obtained from: OpenBSD
- there is a local variable for sc->fw_dma, use that instead
- OpenBSD uses 5*hz to wait for firmware to be loaded
- in case the firmware module contains invalid data, actually release it
- use ATA_SE_EXCHANGED (SError.DIAG.X) bit to detect hot-plug events when
power-management enabled and ATA_SE_PHY_CHANGED (SError.DIAG.N) can't be
trusted;
- on controllers supporting staggered spin-up (SS) put unused channels
into Listen state instead of Off. It should still save some power, but
allow plug-in events to be detected;
- on controllers supporting cold presence detection (CPD), when power
management enabled, use CPD events to detect hot-plug in addition to PHY
events.
down. The ingress queue lock was unused and has been removed as part of
these changes.
- An in-flight egress update from the SGE must be handled before the
queue that requested it is destroyed. Wait for the update to arrive.
- Interrupt handlers must stop processing rx events for a queue before
the queue is destroyed. Events that have not yet been processed
should be ignored once the queue disappears.
MFC after: 1 week
from scratch. Remove htole16() calls, rxon.chan is an uint8_t,
ieee80211_chan2ieee() does return an ic_ieee as an int, but I heavily
doubt a htole16() will buy us anything here.
- IWN_TXOP_TO_US is equal to IEEE80211_TXOP_TO_US
- use IEEE80211_DUR_TU
- ieee80211_add_rates/ieee80211_add_xrates are public, use em
- copied ieee80211_add_ssid it is not public
Instead of spinning in a tight loop for up to 15 seconds, polling for device
readiness while it spins up, return reset completion just after PHY reports
"connect well" or 100ms connection timeout. If device was found, use callout
for checking device readiness with 100ms period up to full 31 second timeout.
This fixes system freeze for 5-10 seconds on drives hot plug-in.
- make SATA SIMs announce capabilities to handle SDB with Notification bit;
- make PMP driver honor this SIMs capability;
- make SATA XPT to negotiate and enable this feature for ATAPI devices.
This feature allows supporting SATA ATAPI devices to inform system about
some events happened, that may require attention. In my case this allows
LG GH22LS50 SATA DVR-RW drive to report tray open/close events. Events
reported to CAM in form of AC_SCSI_AEN async. Further they could be used
as a hints for checking device status and reporting media change to upper
layers, for example, via spoiling mechanism of GEOM.
diversity.
This is bit dirty and likely should be revised at a later date,
with an eye to unifying/tidying up the whole diversity setup
and allowing developers to do "tricky stuff" as they desire.
For now, this works.
* add a new method, specifically for doing per-RX packet
antenna diversity
* set that HAL method only if it's Kite and a Kite chip that
does diversity.
* add a diversity flag to the HAL debugging section
* add a check to make sure the kite diversity code doesn't run
on boards that don't require it, as not all Kite chips will
implement it.
* add some debug statements when the diversity code makes
changes to the antenna diversity/combining setup.
controller port readiness (that should set just after PHY ready signal),
reduce wait time from 10s to 1s before trying more aggressive reset method.
This should improve system responsibility in some failure conditions.
Note: this HAL currently only supports the AR9285.
From Linux ath9k:
The problem is that when the attenuation is increased,
the rate will start to drop from MCS7 -> MCS6, and finally
will see MCS1 -> CCK_11Mbps. When the rate is changed b/w
CCK and OFDM, it will use register desired_scale to calculate
how much tx gain need to change.
The output power with the same tx gain for CCK and OFDM modulated
signals are different. This difference is constant for AR9280
but not AR9285/AR9271. It has different PA architecture
a constant. So it should be calibrated against this PA
characteristic.
The driver has to read the calibrated values from EEPROM and set
the tx power registers accordingly.
Instead of spinning in a tight loop for up to 15 seconds, polling for device
readiness while it spins up, return reset completion just after PHY reports
"connect well" or 100ms connection timeout. If device was found, use callout
for checking device readiness with 100ms period up to full 31 second timeout.
This fixes system freeze for 5-10 seconds on drives hot plug-in.
bus driver at detach, hence ehci_detach() does exactly this since r199718.
Submitted by: Luiz Otavio O Souza
MFC after: 7 days
Approved by: thompsa (mentor)
SCSI status errors to CAM (that was wrong, as it too often turned retriable
wire errors into non-retriable REQUEST SENSE errors), do it only for STALL
errors on control pipe of the CBI devices. STALL on control pipe is just
a one of the ways to report error for CBI devices.
PR: usb/150401, usb/154593.
Reviewed by: hselasky
MFC after: 1 week
ctl/ext noise floor values.
This routine doesn't check to see whether the radio is MIMO
capable - instead, it simply returns either the raw values,
the "nominal" values if the raw values aren't yet available
or are invalid, or '0' values if there's no valid channel/
no valid MIMO values.
Callers are expected to verify the radio is a MIMO radio
(which for now means it's an 11n chipset, there are non-11n
MIMO chipsets out there but I don't think we support them,
at least in MIMO mode) before exporting the MIMO values.
upper-level HAL.
Right now the per-chain noise floor values aren't used anywhere in
the upper-level HAL, so the driver currently has no real reference
to compare the per-chain RSSI values to.
This is needed before per-chain RSSI values (for ctl and ext radios)
are can be thrown upstairs to the net80211 code.
safer for i386 because it can be easily over 4 GHz now. More worse, it can
be easily changed by user with 'machdep.tsc_freq' tunable (directly) or
cpufreq(4) (indirectly). Note it is intentionally not used in performance
critical paths to avoid performance regression (but we should, in theory).
Alternatively, we may add "virtual TSC" with lower frequency if maximum
frequency overflows 32 bits (and ignore possible incoherency as we do now).
chain to be corrupted.
- Removed many console print warnings and replaced with driver maintained
counters.
- Several style(9) fixes.
MFC after: One week.
improves command timeout handling.
Many thanks to Areca for continuing to support FreeBSD.
Submitted by: Ching-Lung Huang <ching2048 areca com tw>
MFC after: 2 months
This fixes a long standing bug in mxge(4) where "ifconfig mxge0 $IP"
did not bring the interface into a RUNNING state, like it does on
most (all?) other FreeBSD NIC drivers.
Thanks to gnn for mentioning the bug, and yongari for pointing out that
ether_ioctl() invokes ifp->if_init() in SIOCSIFADDR.
MFC after: 7 days
- Add the change made in em to the actual unrefreshed number
of descriptors is used as a basis in rxeof on the way out
to determine if more refresh is needed. NOTE: there is a
difference in the ring setup in igb, this is not accidental,
it is necessitated by hardware behavior, when you reset the
newer adapters it will not let you write RDH, it ALWAYS sets
it to 0. Thus the way em does it is not possible.
- Change the sysctl handling of flow control, it will now make
the change dynamically when the variable setting changes rather
than requiring a reset.
- Change the eee sysctl naming, validation found the old unintuitive :)
- Last but not least, some important performance tweaks in the TX
path, I found that UDP behavior could be drastically hindered or
improved with just small changes in the start loop. What I have
here is what testing has shown to be the best overall. Its interesting
to note that changing the clean threshold to start at a full half of
the ring, made a BIG difference in performance. I hope that this
will prove to be advantageous for most workloads.
MFC in a week.
show that there are perfectly working PM timers with occasional "hiccups",
probably because of an SMI. Now we ignore the maximum if it happens once in
the test loop and the width is small enough. Also, relax normal width a bit
to count in a boundary case.
Unlike other controllers which have more advanced jumbo support,
these controllers have one send ring, one standard receive producer
ring and one receive return ring. In order to receive jumbo frames
on the controllers, driver now will increase Rx buffer size to 9k.
Two Rx modes are supported on these controllers and I chose
standard Rx BDs over extended Rx BDs. The extended Rx BD mode
allows up to 4 segmentations for each Rx BDs such that kernel does
not have to allocate large buffer of contiguous memory for
receiving. The extended Rx BD mode is already used on controllers
that have separate jumbo receive ring. However, using extended Rx
BDs on BCM5714/BCM5715/BCM5780 reduces the number of Rx BDs to 256
entries which in turn may reduce the performance. Also UMA backed
page allocator for jumbo frame returns contiguous memory so using
extended Rx BD has no advantage on FreeBSD unless highly customized
local allocator implemented in driver is used.
To use jumbo buffers in standard receive ring, Rx buffer allocation
handler was changed to allocate MJUM9BYTES sized mbuf.
PR: kern/155192
Tested by: Vijay Singh <vijju.singh <> gmail dot com>
Submitted by: mjacob (initial version)
on the fact that real hardware has almost fixed cost to read the ACPI timer.
It is virtually always false for hardware emulation and it makes no sense to
read it multiple times, which is already quite expensive for full emulation.
From the ath9k source:
==
11N: we can no longer afford to self link the last descriptor.
MAC acknowledges BA status as long as it copies frames to host
buffer (or rx fifo). This can incorrectly acknowledge packets
to a sender if last desc is self-linked.
==
Since this is useful for pre-AR5416 chips that communicate PHY errors
via error frames rather than by on-chip counters, leave the support
in there, but disable it for AR5416 and later.
- Add more fields for USB device and host mode
- Add more information to USB PF header so that decoding
can easily be done by software analyzer tools like
Wireshark.
- Optimise usbdump to display USB streams in text format
more efficiently.
- Software using USB PF must be recompiled after
this commit, due to structure changes.
MFC after: 7 days
Approved by: thompsa (mentor)
environments into the kernel environment.
The eventual aim is to replace these with specific drivers for
the various bootloaders (redboot, uboot, etc.) This however will
work for the time being until it can be properly addressed.
Submitted by: Aleksandr Rybalko <ray@dlink.ua>
get's defragged due to a mapping failure the header
pointers will be invalidated and can result in a
TSO or other failure down the line. So, when the
remapping occurs force a retry thru the offload
calculation code. Thanks to Andrew Boyer for discovering
this and cooking up the fix!!
to calculate the outstanding descriptors that need to be
refreshed at any time, and use THAT in rxeof to determine
if refreshing needs to be done. Also change the local_timer
to simply fire off the appropriate interrupt rather than
schedule a tasklet, its simpler.
MFC in two weeks
bus driver will now remember the size of a BAR obtained during the initial
bus scan and use that size when doing lazy resource allocation rather than
resizing the BAR. The bus driver will now also report unallocated BARs to
userland for display by 'pciconf -lb'. Psuedo-resources that are not BARs
(such as the implicit I/O port resources for master/slave ATA controllers)
will no longer be listed as BARs in 'pciconf -lb'. During resume, BARs are
restored from their new saved state instead of having the raw registers
saved and restored across resume. This also fixes restoring BARs at
unusual loactions if said BAR has been allocated by a driver.
Add a constant for the offset of the ROM BIOS BAR in PCI-PCI bridges and
properly handle ROM BIOS BARs in PCI-PCI bridges. The PCI bus now also
properly handles the lack of a ROM BIOS BAR in a PCI-Cardbus bridge.
Tested by: jkim
Introduce the AHB glue for Atheros embedded systems. Right now it's
hard-coded for the AR9130 chip whose support isn't yet in this HAL;
it'll be added in a subsequent commit.
Kernel configuration files now need both 'ath' and 'ath_pci' devices; both
modules need to be loaded for the ath device to work.
in the RX path when doing 11n and block-ack'ed frames. Apparently, the MAC
will loop over that self-linked descriptor and treat it as "good enough"
for (incorrectly!) ACKing the frames in the block-ack.
Until I figure out how to work around this issue in the future, this counter
will tell me if packet RX processing ever gets to the point where it's
touching the self-linked descriptor. If there's ever enough packets to get
to that point, BA's will be invalid and likely very unhappy.
of active DMA cycle. dc_setcfg() also has to wait until the DMA
engine is stopped so using a common function to handle the job is
better than duplicating the code.
No objection from: marius
makes controller to receive bad frames and i82557 will also receive
bad frames since fxp(4) have to receive VLAN oversized frames. If
fxp(4) encounter DMA overrun error, the received frame size would
be 0 so the actual frame size after checksum field extraction the
length would be negative(-2). Due to signed/unsigned comparison
used in driver, frame length check did not work for DMA overrun
frames. Correct this by casting it to int.
While I'm here explicitly check DMA overrun error and discard the
frame regardless of result of received frame length check.
Reported by: n_hibma
Tested by: n_hibma
MFC after: 1 week
I'll clear how it's supposed to work with Bernhard and then look
at enabling this in the correct situations.
But this -does- enable HT RTS protection (using the appropriate legacy
rates) if this bit of code is enabled.
by default.
Adventourous souls with an AR9220/AR9280 or later and who have a device
that sends PS-POLL frames may wish to try tinkering with this option and
get back to me.
Linux ath9k only enables this for AR9280 and later NICs; so
create a capability for it so it isn't enabled for earlier
NICs.
Enabling hardware PS-POLL support will come in a later commit
and will be disabled by default.
Even though they map to setting the error filter register,
ath9k also writes them untouched to AR_RX_FILTER.
The Force-BSSID match bit can stay high, as it maps to a
misc mode register setting rather than an RX filter bit.
The phyerr, radar and bssid-match bits aren't real bits, they map
to enabling bits in other registers. Move those out of the way of
valid RX filter bits.
Add a few new fields from ath9k - compba, ps-poll, mcast-bcast-all.
Changes since 7.8.0 (from the official changelog):
- Fixed sporadic interrupt generation for associated CQ when processing
a local invalidate work request
- Changes to core scheduling to avoid starving requests from the host
under heavy RDMA Read Request load (e.g. packets to the wire)
- Programmed the tp tx resource limiter in function of the traffic (only
affects iWarp)
- Increased the egress NIC gather list length from 36 to 46 entries
MFC after: 1 week
the channel width is ni->ni_chw, which is set to the negotiated channel
width. ni->ni_htflags is the capability, rather than the negotiated
value.
Teach both the TX path and the sample rate module about this.
This seems to work fine for STA but not HT/20 AP mode.
Further discussion with net80211 people will need to take place
to ensure that the right flags are set based on the negotiated
capabilities of the remote peer, rather than whatever the local
parameters are.
Sending short-gi frames in 20mhz may work on some chips but
it certainly isn't supported on anything currently supported
by the HAL; and sending HT40 frames in HT20 mode just plain
won't work.
settings, it seems that our defines are backwards and don't match what
is in the EEPROM documentation or internal driver.
The ath9k code used to have a bitfield here, rather than a uint8_t, and
there were #defines used to swap the order based on the endian of the
platform - this wasn't because of nybble or bit ordering of the
underlying host but because of what the compiler was doing.
This may be the reason for the backwards field numbers, as ath9k had
similar issues.
the AR9285 so I'll leave it off for that.
Ath9k sources indiciate that one of the ANI modes interferes with
RIFS detection, so match ath9k and disable that.
* The existing interrupt mitigation code didn't mitigate anything - the
per-packet TX/RX interrupts are still occuring. It's possible this
worked for the AR5416 but not any later chipsets; I'll investigate and
update as needed.
* Set both the RX and TX threshold registers whilst I'm at it.
This is verified to work on the AR9220 and AR9160. I'm leaving it off
by default in case it's truely broken, but I need to have it enabled
when doing 11n testing or interrupt loads exceed 10,000 interrupts/sec.
queue has its own interrupt. If the exact number that we need is not a
power of 2 and we're using MSI, then switch to interrupt multiplexing.
While here, replace the magic numbers with something more readable.
MFC after: 3 days
At least one AR5416 user has reported measurable throughput drops
with this option. For now, disable it and make it a run-time
twiddle. It won't take affect until the next radio programming
trip though (eg channel scan, channel change.)
so there's no need to enable the RX of invalid frames just to do ANI.
The if_ath code and AR5212 ANI code setup the RX filter bits to enable
receiving OFDM/CCK errors if the device doesn't have the hardware
MIB counters. It isn't initialising it for the AR5416+ because all of
those chips have hardware MIB counters.
This fixes the odd (and performance affecting!) situation where if ani
is enabled (via sysctl dev.ath.X.intmit) then suddenly there's be a very
large volume of phy errors - which is good to track, but not what was
intended. Since each PHY error is a received (0 length) frame, it can
significantly tie up the RX side of things.
It's still not ready for prime-time - there's some TX niggles with these 11n
cards that I'm still trying to wrap my head around, and AMPDU-TX is just not
implemented so things will come to a crashing halt if you're not careful.
"extended capabilities" to refer to the new set of capability structures
starting at offset 0x100 in config space for PCI-express devices. For now
both function names will still work. I will merge this to older branches
to ease driver portability, but 9.0 will ship with a new pci_find_extcap()
function that locates extended capabilities instead.
Reviewed by: imp
MFC after: 1 week
This fix modifies the const addac initval array, rather than modifying
a local copy. It means that running >1 AR9160 on a board may prove to
be unpredictable.
The AR5416 init path also does something similar, so supporting
>1 AR5416 of different revisions could cause problems.
The later fix will be to create a private copy of the Addac data
for the AR5416, AR9160 (and AR9100 when it's merged in) and then
modify that as needed.
Obtained From: Linux ath9k
I found this when trying to figure out why the RX PHY error count
didn't match the OFDM error count ANI was using. It turns out
there was two problems:
* What this commit addresses - using the wrong mask for OFDM errors,
and
* The RX filter is set incorrectly after a channel scan (at least)
even if interference mitigation is enabled by default.
ANI is still disabled by default for the AR5416 and later chips.
bring it in line with the rest of the register initialisation.
I've verified that the 2/5ghz board values written to the
chip match what was previously written.
* add pspoll/uapsd queue setup defaults;
* enable the exponential backoff window rather than the random
backoff window when doing TX contention management.
would be a problem, make sure it isn't overwritten by whatever is in
there at cold reset.
This brings the > ar5416 init path treatment of AR_MISC_MODE.
report descriptor information, sysctl utility
will show it for us.
- Modify sysctl node description to make it more
understanable.
Found by: Alexander Best <arundel@freebsd.org>
Submitted by: Eygene Ryabinkin <rea@freebsd.org>
MFC after: 14 days
Approved by: thompsa (mentor)
value is updated after that we read it in the queue-head. This patch can
fix problems with BULK timeouts. The issue was found on a Nvidia chipset.
MFC after: 14 days
Approved by: thompsa (mentor)
* Pull out the static rix stuff into a different function
* I know this may slightly drop performance, but check if a static
rix is needed before each packet TX.
* Whilst I'm at it, add a little extra debugging to the rate
control stuff to make it easier to follow what's going on.
Give it a good go (32 attempts) and then print out a warning that's
going to occur whether HAL debugging is enabled or not. Then don't
abort the radio setup; just continue merrily along.
This should fix the issue that users were having where scanning would
occasionally fail on the active channel, causing traffic to cease
until the radio scanned again.
not needed.
These calibrations are only applicable if the chip operating mode
engages both interleaved RX ADCs (ie, it's compensating for the
differences in DC gain and DC offset -between- the two ADCs.)
Otherwise the chip reads values of 0x0 for the secondary ADC
(as I guess it's not enabled here) and thus writes potentially
bogus info into the chip.
I've tested this on the AR9160 and AR9280; both behave themselves
in 11g mode with these calibrations disabled.
for fixing them based on the ath9k related TXQ fixes.
I've done this so people can go over the history of the diffs to the original
AR5212 routines (which AR5416 and later chips use) to see what's changed.
enables broadcast filtering. Make sure to clear the bit to receive
broadcast frames. While I'm here rename the bit definition to
reflect reality.
Reported by: brad@OpenBSD
MFC after: 1 week
This commit really is "fix the OFDM duration calculation to match reality when
running in 802.11g mode."
The AR5212 init vals set AR_MISC_MODE to 0x0 and all the bits that can be set are
set through code.
The AR5416 and later initvals set AR_MISC_MODE to various other values (with
the AR5212 AR_MISC_MODE options cleared), which include AR_PCU_CCK_SIFS_MODE .
This adds 6uS to SIFS on non-CCK frames when transmitting.
This fixes the issue where _DATA_ 802.11g OFDM frames were being TX'ed with
the ACK duration set to 38uS, not 44uS as on the AR5212 (and other devices.)
The AR5212 TX pathway obeys the software-programmed duration field in the packet,
but the 11n TX pathway overrides that with a hardware-calculated duration. This
was getting it wrong because of the above AR_MISC_MODE setting. I've verified
that 11g data OFDM frames are now being TXed with the correct ACK+SIFS duration
programmed in.
Since ath9k does some slightly different bit fiddling when setting up
the TX queues, it may that the TX queue setup/reset functions will need
overriding later on.
been undergoing test for some weeks. This improves the RX
mbuf handling to avoid system hang due to depletion. Thanks
to all those who have been testing the code, and to Beezar
Liu for the design changes.
Next the igb driver is updated for similar RX changes, but
also to add new features support for our upcoming i350 family
of adapters.
MFC after a week
chipsets that do not have an HT slave at 0:0:0:0. The Linux quirk is
actually specific to Nvidia chipsets and the check I had added was in
the wrong place.
Prodded by: nathanw
- Always enable the HyperTransport MSI mapping window for HyperTransport
to PCI bridges (these show up as HyperTransport slave devices).
The mapping windows in PCI-PCI bridges are enabled by existing code
in the PCI-PCI bridge driver as MSI requests propagate up the device
tree, but Host-PCI bridges don't really show up in that tree.
- If the PCI device at domain 0 bus 0 slot 0 function 0 is not a
HyperTransport device, then blacklist MSI on any other HT devices in
the system. Linux has a similar quirk.
PR: kern/155442
Tested by: Zack Dannar zdannar of gmail
MFC after: 1 week
With this change, driver may not notice updated descriptor status
change when bounce buffers are active. However, rxeof() in next run
will handle the synchronization.
Change dc_rxeof() a bit to return the number of processed frames in
RX descriptor ring. Previously it returned the number of frames
that were successfully passed to upper stack which in turn means it
ignored frames that were discarded due to errors. The number of
processed frames in RX descriptor ring is used to detect whether
driver is out of sync with controller's current descriptor pointer.
Returning number of processed frames reduces unnecessary (probably
wrong) re-synchronization.
Reviewed by: marius
This does a few things in particular:
* Abstracts out the gain control settings into a separate function;
* Configure antenna diversity, LNA and antenna gain parameters;
* Configure ob/db entries - the later v4k EEPROM modal revisions have
multiple OB/DB parameters which are used for some form of
calibration. Although the radio does have defaults for each,
the EEPROM can override them.
This resolves the AR2427 related issues I've been seeing and makes
it stable at all 11g rates for both TX and RX.
The offsets didn't match the assumption that nfarray[] is ordered by the
chainmask bits and programmed via the register order in ar5416_cca_regs[].
This repairs that damage and ensures that chain 1 is programmed correctly.
(And extension channels will now be programmed correctly also.)
This fixes some of the stuck beacons I've been seeing on my AR9160/AR5416
setups - because Chain 1 would be programmed -80 or -85 dBm, which is
higher than the actual noise floor and thus convincing the radio that
indeed it can't ever transmit.
rather than duplicating them for the v14 (ar5416+) and v4k (ar9285) codebases.
Further chipsets (eg the AR9287) have yet another EEPROM format which will use
these routines to calculate things.
to the TX closed-loop power control registers.
* Modify a couple of functions to take the register chain number,
rather than the regChainOffset value. This allows for the
register chain to be logged.
also does this for sound drivers it's probably not necessary for all
combinations of controllers and drivers. However, given that our sound
drivers completely lack bus_dmamap_sync(9) calls this at least serves
as a workaround when enabling use of the IOMMU streaming buffers on
sparc64 and generally for arm and mips.
MFC after: 2 weeks
Linux ath9k.
The ath9k ar9002_hw_init_cal() isn't entirely clear about what
is supposed to be called for what chipsets, so I'm ignoring the
rest of it and just porting the AR9285 init cal path as-is and
leaving the rest alone. Subsequent commits may also tidy up the
Merlin (AR9285) and other chipset support.
Obtained from: Linux ath9k
The ath9k driver has a unified boundary/pdadc function, whereas
ours is split into two (one for each EEPROM type.) This is why
the AR9280 check is done here where we could safely assume it'll
always be AR9280 or later.
this is incorrect for Kite (AR9285) and any future chipsets that
override the EEPROM related routines.
It meant that a direct call to set the TX power would call the v14 EEPROM
AR5416/AR9280 calibration routines, rather than the v4k EEPROM routines
for the AR9285. It thus read the incorrect values from the EEPROM and
programmed garbage PDADC and TX power values into the hardware.
It looks like these apply in both open and closed loop TX power control,
but the only merlin boards i have either have OL -or- a non-default power
offset, not both.
to both make things clearer, and to make it easier to write userland
code which pulls in these definitions without needing to pull in the
rest of the HAL.
This stuff should be deprecated at some point in the future once
the net80211 regulatory domain support encapsulates all of the
defintions here.
This is something bus clock related from what I can gather. It is needed for
the AR9220 based Ubiquiti SR71-12 and SR71-15 Mini-PCI NICs.
(Note: those NICs don't work right now because of earlier changes to handle
power table offset correctly. That'll be resolved in a follow-up commit.)
Merlin (ar9280) and later were full-reset if they're doing open-loop TX
power control but the TSF wasn't being saved/restored.
Add ar5212SetTsf64() which sets the 64 bit TSF appropriately.
value. Controllers that always require "store and forward" mode(
Davicom and PNIC 82C168) have no way to recover from TX underrun
except completely reinitializing hardware. Previously only Davicom
was reinitialized and the TX FIFO threshold was changed not to use
"store and forward" mode after reinitialization since the default
FIFO threshold value was 0. This effectively disabled Davicom
controller's "store and forward" mode once it encountered TX
underruns. In theory, this can cause watchodg timeouts.
Intel 21143 controller requires TX MAC should be idle before
changing TX FIFO threshold. So driver tried to disable TX MAC and
checked whether it saw the idle state of TX MAC. Driver should
perform full hardware reinitialization on failing to enter to idle
state and it should not touch TX MAC again once it performed full
reinitialization.
While I'm here remove resetting TX FIFO threshold to 0 when
interface is put into down state. If driver ever encountered TX
underrun, it's likely to trigger TX underrun again whenever
interface is brought to up again. Keeping old/learned TX FIFO
threshold value shall reduce the chance of seeing TX underrns in
next run.
generally tidy up the TX power programming code.
Enforce that the TX power offset for Merlin is -5 dBm, rather than
any other value programmable in the EEPROM. This requires some
further code to be ported over from ath9k, so until that is done
and tested, fail to attach NICs whose TX power offset isn't -5
dBm.
This improves both legacy and HT transmission on my merlin board.
It allows for stable MCS TX up to MCS15.
Specifics:
* Refactor out a bunch of the TX power calibration code -
setting/obtaining the power detector / gain boundaries,
programming the PDADC
* Take the -5 dBm TX power offset into account on Merlin -
"0" in the per-rate TX power register means -5 dBm, not
0 dBm
* When doing OLC
* Enforce min (0) and max (AR5416_MAX_RATE_POWER) when fiddling
with the TX power, to avoid the TX power values from wrapping
when low.
* Implement the 1 dBm cck power offset when doing OLC
* Implement temperature compensation for 2.4ghz mode when doing OLC
* Implement an AR9280 specific TX power calibration routine which
includes the OLC twiddles, leaving the earlier chipset path
(AR5416, AR9160) alone
Whilst here, use these refactored routines for the AR9285 TX power
calibration/programming code and enforce correct overflow/underflow
handling when fiddling with TX power values.
Obtained from: linux ath9k
the ataahci(4) and atamarvell(4) drivers share it between the host and
the controller.
- Spell some zeros as BUS_DMA_WAITOK when used as bus_dmamem_alloc() flags.
MFC after: 2 weeks
coherent.
- Add some missing bus_dmamap_sync() calls. This includes putting such
calls before calling reply handlers instead of calling bus_dmamap_sync()
for the request queue from individual reply handlers as these handlers
generally read back updates by the controller.
Tested on amd64 and sparc64.
MFC after: 2 weeks
It defaults to -5 dBm for eeproms earlier than v21.
This apparently only applies to Merlin (AR9280) or later,
earlier 11n chipsets have a power table offset of 0.
All the code in ath9k which checks the power table offset
and takes it into account first ensures the chip is
Merlin or later.
The earlier way of doing debugging would evaluate the function parameters
before calling the HALDEBUG. In the case of detailed register debugging
would mean a -lot- of unneeded register IO and other stuff was going on.
This method evaluates the ath_hal_debug variable before the function
parameters are evaluated, drastically reducing the amount of overhead
enabling HAL debugging during compilation.
- everything related to LRO should be in #ifdef INET blocks
- reorder sge_iq's fields so that the most frequently used are all together
- pull all rx code into t4_intr_data directly
- let go of the ingress queue lock when passing up data
- refill the freelist only if it is short of at least 32 buffers
determining whether to use MRR or not.
It uses the 11g protection mode when calculating 11n related stuff, rather
than checking the 11n protection mode.
Furthermore, the 11n chipsets can quite happily handle multi-rate retry w/
protection; the TX path and rate control modules need to be taught about
that.
* change the BB gating logic to explicitly define which chips are covered;
the ath9k method isn't as clear.
* don't disable the BB gating for now, the ar5416 initvals have it, and the
ar9160 initval sets it to 0x0. Figure out why before re-enabling this.
* migrate the Merlin (ar9280) applicable WAR from the Kite (ar9285) code
(which won't get called for Merlin!) and stuff it in here.
* add dot11rate_label() which returns Mb or MCS based on legacy or HT
* use it everywhere dot11rate() is used
* in the "current selection" part at the top of the debugging output,
otuput what the rate itself is rather than the rix. The rate index
(rix) has very little meaning to normal humans who don't know how
to find the PHY settings for each of the chipsets; pointing out the
rix rate and type is likely more useful.
These flags are just plain wrong - they're the node flags from negotiation,
not the configured flags. I'll jump in later on and figure out exactly
what should be done to properly set these two flags when in both STA mode
(ie, what the AP says is possible and what's configured) and AP mode
(ie, where the AP has a configuration, but then negotiates what's possible
with each node, so per-node configuration can and will differ.)
This allows the 11n 2.4ghz/ht20 mode to associate (but perform poorly still)
and exchange MCS rates with atheros reference APs and a Cisco/Linksys
E3000 AP.
operation. Previously ownership was transferred to hardware before
setting address of new RX buffer such that it was possible for
hardware to use wrong RX buffer address.
While here keep compiler from re-ordering instructions by declaring
descriptor members volatile. Memory barriers would do the same job
but volatile is supposed to be cheaper than using memory barriers,
especially on MP systems.
Submitted by: marius
MFC after: 1 week
mps.c: Hide the 'out of chain frames' warning behind MPS_INFO.
mps_sas.c: Hide the SIM queue freeze/unfreeze messages behind MPS_INFO.
mpsvar.h: Bump the number of chain frames from 1024 to 2048. From
testing, it looks like this makes it less likely that we'll
run out of chain frames, and it doesn't cost much memory
(32K).
MFC after: 3 days
means of allowing vendor specific interface class for audio and MIDI devices.
- Add new quirks for this. The vendor and product list in OpenBSD's
dev/usb/umidi_quirks.c was used as reference.
MFC after: 14 days
Approved by: thompsa (mentor)
causing the size calculation to be truncated to the size of an int
(32-bits on all current architectures).
Submitted by: Anish akgupt3 of gmail
MFC after: 1 week
link flips during alias address insertion or dhclient operation.
While I'm here remove dc_reset() in DC_ISR_BUS_ERR case. Device is
fully reinitialized again in dc_init_locked().
* Turn ath_tx_calc_ctsduration() into a function that
returns the ctsduration, or -1 for HT rates;
* add a printf() to ath_tx_calc_ctsduration() which will be
very loud if somehow that function is called with an MCS
rate;
* Add ath_tx_get_rtscts_rate() which returns the RTS/CTS
rate to use for the given data rate, incl. the short
preamble flag;
* Only call ath_tx_calc_ctsduration() for non-11n chipsets;
11n chipsets don't require the rtscts duration to be
calculated.
It's used to calculate:
* the initial per-rate entries for short/long preamble ACK durations;
* packet durations for TDMA slot decisions;
* RTS/CTS protection durations;
* updating the duration field in the 802.11 frame header
This way invalid durations will generate a warning, prompting for it to be
fixed.
respectively and fix all bus_dma(9) issues seen when bounce buffers
are used.
o Setup frame handling had no bus_dmamap_sync(9) which prevented
driver from configuring RX filter. Add missing bus_dmamap_sync(9)
in both dc_setfilt_21143()/dc_setfilt_xircom() and dc_txeof().
o Use bus_addr_t for DMA segment instead of using u_int32_t.
o Introduce dc_dma_alloc()/dc_dma_free() functions to allocate/free
DMA'able memory.
o Create two DMA descriptor list for each TX/RX lists. This change
will minimize the size of bounce buffers that would be used in
each TX/RX path. Previously driver had to copy both TX/RX lists
when bounce buffer is active.
o 21143 data sheet says descriptor list requires 4 bytes alignment.
Remove PAGE_SIZE alignment restriction and use
sizeof(struct dc_dec).
o Setup frame requires 4 bytes alignment. Remove PAGE_SIZE
alignment restriction and use sizeof(struct dc_dec).
o Add missing DMA map unload for both setup frame and TX/RX
descriptor list.
o Overhaul RX handling logic such that make driver always allocate
new RX buffer with dc_newbuf(). Previously driver allowed to
copy received frame with m_devget(9) after passing the
descriptor ownership to controller. This can lead to passing
wrong frame to upper stack.
o Introduce dc_discard_rxbuf() which will discard received frame
and reuse loaded DMA map and RX mbuf.
o Correct several wrong bus_dmamap_sync(9) usage in dc_rxeof and
dc_txeof. The TX/RX descriptor lists are updated by both driver
and HW so READ/WRITE semantics should be used.
o If driver failed to allocate new RX buffer, update if_iqdrops
counter instead of if_ierrors since driver received the frame
without errors.
o Make sure to unload loaded setup frame DMA map in dc_txeof and
clear the mark of setup frame of the TX descriptor in dc_txeof().
o Add check for possible TX descriptor overruns in dc_encap() and
move check for free buffer to caller, dc_start_locked().
o Swap the loaded DMA map and the last DMA map for multi-segmented
frames. Since dc_txeof() assumes the last descriptor of the
frame has the DMA map, driver should swap the first and the last
DMA map in dc_encap(). Previously driver tried to unload
not-yet-loaded DMA map such that the loaded DMA map was not
unloaded at all for multi-segmented frames.
o Rewrite DC_RXDESC/DC_TXDESC macro to simpler one.
o Remove definition of ETHER_ALIGN, it's already defined in
ethernet.h.
With this changes, dc(4) works with bounce buffers and it shall
also fix issues which might have shown in PAE environments.
Tested by: marius
Previously dc(4) always checked whether there is pending interrupts
and this consumed a lot of CPU cycles in interrupt handler. Limit
the number of processing for TX/RX frames to 16. Also allow sending
frames in the loop not to starve TX under high RX load.
Reading DC_ISR register should be protected with driver lock,
otherwise interrupt handler could be run(e.g. link state change)
before the completion of dc_init_locked().
While I'm here remove unneeded code.