postgresql/src/include/executor/nodeHash.h

76 lines
3.1 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nodeHash.h
* prototypes for nodeHash.c
*
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 16:08:53 -04:00
* src/include/executor/nodeHash.h
*
*-------------------------------------------------------------------------
*/
#ifndef NODEHASH_H
#define NODEHASH_H
#include "access/parallel.h"
#include "nodes/execnodes.h"
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 02:39:21 -05:00
struct SharedHashJoinBatch;
extern HashState *ExecInitHash(Hash *node, EState *estate, int eflags);
extern Node *MultiExecHash(HashState *node);
extern void ExecEndHash(HashState *node);
extern void ExecReScanHash(HashState *node);
Speed up Hash Join by making ExprStates support hashing Here we add ExprState support for obtaining a 32-bit hash value from a list of expressions. This allows both faster hashing and also JIT compilation of these expressions. This is especially useful when hash joins have multiple join keys as the previous code called ExecEvalExpr on each hash join key individually and that was inefficient as tuple deformation would have only taken into account one key at a time, which could lead to walking the tuple once for each join key. With the new code, we'll determine the maximum attribute required and deform the tuple to that point only once. Some performance tests done with this change have shown up to a 20% performance increase of a query containing a Hash Join without JIT compilation and up to a 26% performance increase when JIT is enabled and optimization and inlining were performed by the JIT compiler. The performance increase with 1 join column was less with a 14% increase with and without JIT. This test was done using a fairly small hash table and a large number of hash probes. The increase will likely be less with large tables, especially ones larger than L3 cache as memory pressure is more likely to be the limiting factor there. This commit only addresses Hash Joins, but lays expression evaluation and JIT compilation infrastructure for other hashing needs such as Hash Aggregate. Author: David Rowley Reviewed-by: Alexey Dvoichenkov <alexey@hyperplane.net> Reviewed-by: Tels <nospam-pg-abuse@bloodgate.com> Discussion: https://postgr.es/m/CAApHDvoexAxgQFNQD_GRkr2O_eJUD1-wUGm%3Dm0L%2BGc%3DT%3DkEa4g%40mail.gmail.com
2024-08-19 21:38:22 -04:00
extern HashJoinTable ExecHashTableCreate(HashState *state);
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 02:39:21 -05:00
extern void ExecParallelHashTableAlloc(HashJoinTable hashtable,
int batchno);
extern void ExecHashTableDestroy(HashJoinTable hashtable);
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 02:39:21 -05:00
extern void ExecHashTableDetach(HashJoinTable hashtable);
extern void ExecHashTableDetachBatch(HashJoinTable hashtable);
extern void ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable,
int batchno);
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 02:39:21 -05:00
extern void ExecHashTableInsert(HashJoinTable hashtable,
TupleTableSlot *slot,
uint32 hashvalue);
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 02:39:21 -05:00
extern void ExecParallelHashTableInsert(HashJoinTable hashtable,
TupleTableSlot *slot,
uint32 hashvalue);
extern void ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
TupleTableSlot *slot,
uint32 hashvalue);
extern void ExecHashGetBucketAndBatch(HashJoinTable hashtable,
uint32 hashvalue,
int *bucketno,
int *batchno);
extern bool ExecScanHashBucket(HashJoinState *hjstate, ExprContext *econtext);
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 02:39:21 -05:00
extern bool ExecParallelScanHashBucket(HashJoinState *hjstate, ExprContext *econtext);
extern void ExecPrepHashTableForUnmatched(HashJoinState *hjstate);
extern bool ExecParallelPrepHashTableForUnmatched(HashJoinState *hjstate);
extern bool ExecScanHashTableForUnmatched(HashJoinState *hjstate,
ExprContext *econtext);
extern bool ExecParallelScanHashTableForUnmatched(HashJoinState *hjstate,
ExprContext *econtext);
extern void ExecHashTableReset(HashJoinTable hashtable);
extern void ExecHashTableResetMatchFlags(HashJoinTable hashtable);
extern void ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
Add hash_mem_multiplier GUC. Add a GUC that acts as a multiplier on work_mem. It gets applied when sizing executor node hash tables that were previously size constrained using work_mem alone. The new GUC can be used to preferentially give hash-based nodes more memory than the generic work_mem limit. It is intended to enable admin tuning of the executor's memory usage. Overall system throughput and system responsiveness can be improved by giving hash-based executor nodes more memory (especially over sort-based alternatives, which are often much less sensitive to being memory constrained). The default value for hash_mem_multiplier is 1.0, which is also the minimum valid value. This means that hash-based nodes continue to apply work_mem in the traditional way by default. hash_mem_multiplier is generally useful. However, it is being added now due to concerns about hash aggregate performance stability for users that upgrade to Postgres 13 (which added disk-based hash aggregation in commit 1f39bce0). While the old hash aggregate behavior risked out-of-memory errors, it is nevertheless likely that many users actually benefited. Hash agg's previous indifference to work_mem during query execution was not just faster; it also accidentally made aggregation resilient to grouping estimate problems (at least in cases where this didn't create destabilizing memory pressure). hash_mem_multiplier can provide a certain kind of continuity with the behavior of Postgres 12 hash aggregates in cases where the planner incorrectly estimates that all groups (plus related allocations) will fit in work_mem/hash_mem. This seems necessary because hash-based aggregation is usually much slower when only a small fraction of all groups can fit. Even when it isn't possible to totally avoid hash aggregates that spill, giving hash aggregation more memory will reliably improve performance (the same cannot be said for external sort operations, which appear to be almost unaffected by memory availability provided it's at least possible to get a single merge pass). The PostgreSQL 13 release notes should advise users that increasing hash_mem_multiplier can help with performance regressions associated with hash aggregation. That can be taken care of by a later commit. Author: Peter Geoghegan Reviewed-By: Álvaro Herrera, Jeff Davis Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com Backpatch: 13-, where disk-based hash aggregation was introduced.
2020-07-29 17:14:58 -04:00
bool try_combined_hash_mem,
int parallel_workers,
size_t *space_allowed,
int *numbuckets,
int *numbatches,
int *num_skew_mcvs);
extern int ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue);
extern void ExecHashEstimate(HashState *node, ParallelContext *pcxt);
extern void ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt);
extern void ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt);
extern void ExecHashRetrieveInstrumentation(HashState *node);
extern void ExecShutdownHash(HashState *node);
extern void ExecHashAccumInstrumentation(HashInstrumentation *instrument,
HashJoinTable hashtable);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:18:54 -04:00
#endif /* NODEHASH_H */