Add BASE_BACKUP command to walsender, allowing it to stream a
base backup to the client (in tar format). The syntax is still
far from ideal, that will be fixed in the switch to use a proper
grammar for walsender.
No client included yet, will come as a separate commit.
Magnus Hagander and Heikki Linnakangas
wait until it is set. Latches can be used to reliably wait until a signal
arrives, which is hard otherwise because signals don't interrupt select()
on some platforms, and even when they do, there's race conditions.
On Unix, latches use the so called self-pipe trick under the covers to
implement the sleep until the latch is set, without race conditions. On
Windows, Windows events are used.
Use the new latch abstraction to sleep in walsender, so that as soon as
a transaction finishes, walsender is woken up to immediately send the WAL
to the standby. This reduces the latency between master and standby, which
is good.
Preliminary work by Fujii Masao. The latch implementation is by me, with
helpful comments from many people.
max_standby_streaming_delay, and revise the implementation to avoid assuming
that timestamps found in WAL records can meaningfully be compared to clock
time on the standby server. Instead, the delay limits are compared to the
elapsed time since we last obtained a new WAL segment from archive or since
we were last "caught up" to WAL data arriving via streaming replication.
This avoids problems with clock skew between primary and standby, as well
as other corner cases that the original coding would misbehave in, such
as the primary server having significant idle time between transactions.
Per my complaint some time ago and considerable ensuing discussion.
Do some desultory editing on the hot standby documentation, too.
and current server clock time to SR data messages. These are not currently
used on the slave side but seem likely to be useful in future, and it'd be
better not to change the SR protocol after release. Per discussion.
Also do some minor code review and cleanup on walsender.c, and improve the
protocol documentation.
archival or hot standby should be WAL-logged, instead of deducing that from
other options like archive_mode. This replaces recovery_connections GUC in
the primary, where it now has no effect, but it's still used in the standby
to enable/disable hot standby.
Remove the WAL-logging of "unlogged operations", like creating an index
without WAL-logging and fsyncing it at the end. Instead, we keep a copy of
the wal_mode setting and the settings that affect how much shared memory a
hot standby server needs to track master transactions (max_connections,
max_prepared_xacts, max_locks_per_xact) in pg_control. Whenever the settings
change, at server restart, write a WAL record noting the new settings and
update pg_control. This allows us to notice the change in those settings in
the standby at the right moment, they used to be included in checkpoint
records, but that meant that a changed value was not reflected in the
standby until the first checkpoint after the change.
Bump PG_CONTROL_VERSION and XLOG_PAGE_MAGIC. Whack XLOG_PAGE_MAGIC back to
the sequence it used to follow, before hot standby and subsequent patches
changed it to 0x9003.
enabled. Bypassing the kernel cache is counter-productive in that case,
because the archiver/walsender process will read from the WAL file
soon after it's written, and if it's not cached the read will cause
a physical read, eating I/O bandwidth available on the WAL drive.
Also, walreceiver process does unaligned writes, so disable O_DIRECT
in walreceiver process for that reason too.
restore_command, if the connection to the primary server is lost. This
ensures that the standby can recover automatically, if the connection is
lost for a long time and standby falls behind so much that the required
WAL segments have been archived and deleted in the master.
This also makes standby_mode useful without streaming replication; the
server will keep retrying restore_command every few seconds until the
trigger file is found. That's the same basic functionality pg_standby
offers, but without the bells and whistles.
To implement that, refactor the ReadRecord/FetchRecord functions. The
FetchRecord() function introduced in the original streaming replication
patch is removed, and all the retry logic is now in a new function called
XLogReadPage(). XLogReadPage() is now responsible for executing
restore_command, launching walreceiver, and waiting for new WAL to arrive
from primary, as required.
This also changes the life cycle of walreceiver. When launched, it now only
tries to connect to the master once, and exits if the connection fails, or
is lost during streaming for any reason. The startup process detects the
death, and re-launches walreceiver if necessary.
binary, revert PGDLLIMPORT decoration of global variables. I'm not sure
if there's any real harm from unnecessary PGDLLIMPORTs, but these are all
internal variables that external modules really shouldn't be messing
with. ThisTimeLineID still needs PGDLLIMPORT.
walreceiver as whole into a dynamically loaded module, split the
libpq-specific parts of it into dynamically loaded module and keep the rest
in the main backend binary.
Although Tom fixed the Windows compilation problems with the old walreceiver
module already, this is a cleaner division of labour and makes the code
more readable. There's also the prospect of adding new transport methods
as pluggable modules in the future, which this patch makes easier, though for
now the API between libpqwalreceiver and walreceiver process should be
considered private.
The libpq-specific module is now in src/backend/replication/libpqwalreceiver,
and the part linked with postgres binary is in
src/backend/replication/walreceiver.c.
This includes two new kinds of postmaster processes, walsenders and
walreceiver. Walreceiver is responsible for connecting to the primary server
and streaming WAL to disk, while walsender runs in the primary server and
streams WAL from disk to the client.
Documentation still needs work, but the basics are there. We will probably
pull the replication section to a new chapter later on, as well as the
sections describing file-based replication. But let's do that as a separate
patch, so that it's easier to see what has been added/changed. This patch
also adds a new section to the chapter about FE/BE protocol, documenting the
protocol used by walsender/walreceivxer.
Bump catalog version because of two new functions,
pg_last_xlog_receive_location() and pg_last_xlog_replay_location(), for
monitoring the progress of replication.
Fujii Masao, with additional hacking by me