In all branches back to 8.3, this patch fixes a questionable assumption in
CompactCheckpointerRequestQueue/CompactBgwriterRequestQueue that there are
no uninitialized pad bytes in the request queue structs. This would only
cause trouble if (a) there were such pad bytes, which could happen in 8.4
and up if the compiler makes enum ForkNumber narrower than 32 bits, but
otherwise would require not-currently-planned changes in the widths of
other typedefs; and (b) the kernel has not uniformly initialized the
contents of shared memory to zeroes. Still, it seems a tad risky, and we
can easily remove any risk by pre-zeroing the request array for ourselves.
In addition to that, we need to establish a coding rule that struct
RelFileNode can't contain any padding bytes, since such structs are copied
into the request array verbatim. (There are other places that are assuming
this anyway, it turns out.)
In 9.1 and up, the risk was a bit larger because we were also effectively
assuming that struct RelFileNodeBackend contained no pad bytes, and with
fields of different types in there, that would be much easier to break.
However, there is no good reason to ever transmit fsync or delete requests
for temp files to the bgwriter/checkpointer, so we can revert the request
structs to plain RelFileNode, getting rid of the padding risk and saving
some marginal number of bytes and cycles in fsync queue manipulation while
we are at it. The savings might be more than marginal during deletion of
a temp relation, because the old code transmitted an entirely useless but
nonetheless expensive-to-process ForgetRelationFsync request to the
background process, and also had the background process perform the file
deletion even though that can safely be done immediately.
In addition, make some cleanup of nearby comments and small improvements to
the code in CompactCheckpointerRequestQueue/CompactBgwriterRequestQueue.
This provides a speedup of about 4X when NBuffers is large enough.
There is also a useful reduction in sinval traffic, since we
only do CacheInvalidateSmgr() once not once per fork.
Simon Riggs, reviewed and somewhat revised by Tom Lane
When the "hot" members of PGPROC were split off to separate PGXACT structs,
many PGPROC fields referred to in comments were moved to PGXACT, but the
comments were neglected in the commit. Mostly this is just a search/replace
of PGPROC with PGXACT, but the way the dummy PGPROC entries are created for
prepared transactions changed more, making some of the comments totally
bogus.
Noah Misch
Commit 6d90eaaa89 added a hibernation mode
to the bgwriter to reduce the server's idle-power consumption. However,
its interaction with the detailed behavior of BgBufferSync's feedback
control loop wasn't very well thought out. That control loop depends
primarily on the rate of buffer allocation, not the rate of buffer
dirtying, so the hibernation mode has to be designed to operate only when
no new buffer allocations are happening. Also, the check for whether the
system is effectively idle was not quite right and would fail to detect
a constant low level of activity, thus allowing the bgwriter to go into
hibernation mode in a way that would let the cycle time vary quite a bit,
possibly further confusing the feedback loop. To fix, move the wakeup
support from MarkBufferDirty and SetBufferCommitInfoNeedsSave into
StrategyGetBuffer, and prevent the bgwriter from entering hibernation mode
unless no buffer allocations have happened recently.
In addition, fix the delaying logic to remove the problem of possibly not
responding to signals promptly, which was basically caused by trying to use
the process latch's is_set flag for multiple purposes. I can't prove it
but I'm suspicious that that hack was responsible for the intermittent
"postmaster does not shut down" failures we've been seeing in the buildfarm
lately. In any case it did nothing to improve the readability or
robustness of the code.
In passing, express the hibernation sleep time as a multiplier on
BgWriterDelay, not a constant. I'm not sure whether there's any value in
exposing the longer sleep time as an independently configurable setting,
but we can at least make it act like this for little extra code.
This patch modifies the walwriter process so that, when it has not found
anything useful to do for many consecutive wakeup cycles, it extends its
sleep time to reduce the server's idle power consumption. It reverts to
normal as soon as it's done any successful flushes. It's still true that
during any async commit, backends check for completed, unflushed pages of
WAL and signal the walwriter if there are any; so that in practice the
walwriter can get awakened and returned to normal operation sooner than the
sleep time might suggest.
Also, improve the checkpointer so that it uses a latch and a computed delay
time to not wake up at all except when it has something to do, replacing a
previous hardcoded 0.5 sec wakeup cycle. This also is primarily useful for
reducing the server's power consumption when idle.
In passing, get rid of the dedicated latch for signaling the walwriter in
favor of using its procLatch, since that comports better with possible
generic signal handlers using that latch. Also, fix a pre-existing bug
with failure to save/restore errno in walwriter's signal handlers.
Peter Geoghegan, somewhat simplified by Tom
Commit 62c7bd31c8 had assorted problems, most
visibly that it broke PREPARE TRANSACTION in the presence of session-level
advisory locks (which should be ignored by PREPARE), as per a recent
complaint from Stephen Rees. More abstractly, the patch made the
LockMethodData.transactional flag not merely useless but outright
dangerous, because in point of fact that flag no longer tells you anything
at all about whether a lock is held transactionally. This fix therefore
removes that flag altogether. We now rely entirely on the convention
already in use in lock.c that transactional lock holds must be owned by
some ResourceOwner, while session holds are never so owned. Setting the
locallock struct's owner link to NULL thus denotes a session hold, and
there is no redundant marker for that.
PREPARE TRANSACTION now works again when there are session-level advisory
locks, and it is also able to transfer transactional advisory locks to the
prepared transaction, but for implementation reasons it throws an error if
we hold both types of lock on a single lockable object. Perhaps it will be
worth improving that someday.
Assorted other minor cleanup and documentation editing, as well.
Back-patch to 9.1, except that in the 9.1 branch I did not remove the
LockMethodData.transactional flag for fear of causing an ABI break for
any external code that might be examining those structs.
Remove the following ports:
- dgux
- nextstep
- sunos4
- svr4
- ultrix4
- univel
These are obsolete and not worth rescuing. In most cases, there is
circumstantial evidence that they wouldn't work anymore anyway.
The previous code could cause a backend crash after BEGIN; SAVEPOINT a;
LOCK TABLE foo (interrupted by ^C or statement timeout); ROLLBACK TO
SAVEPOINT a; LOCK TABLE foo, and might have leaked strong-lock counts
in other situations.
Report by Zoltán Böszörményi; patch review by Jeff Davis.
Postmaster sets max_safe_fds by testing how many open file descriptors it
can open, and that is normally inherited by all child processes at fork().
Not so on EXEC_BACKEND, ie. Windows, however. Because of that, we
effectively ignored max_files_per_process on Windows, and always assumed
a conservative default of 32 simultaneous open files. That could have an
impact on performance, if you need to access a lot of different files
in a query. After this patch, the value is passed to child processes by
save/restore_backend_variables() among many other global variables.
It has been like this forever, but given the lack of complaints about it,
I'm not backpatching this.
Currently, the only way to see the numbers this gathers is via
EXPLAIN (ANALYZE, BUFFERS), but the plan is to add visibility through
the stats collector and pg_stat_statements in subsequent patches.
Ants Aasma, reviewed by Greg Smith, with some further changes by me.
When a backend needs to flush the WAL, and someone else is already flushing
the WAL, wait until it releases the WALInsertLock and check if we still need
to do the flush or if the other backend already did the work for us, before
acquiring WALInsertLock. This helps group commit, because when the WAL flush
finishes, all the backends that were waiting for it can be woken up in one
go, and the can all concurrently observe that they're done, rather than
waking them up one by one in a cascading fashion.
This is based on a new LWLock function, LWLockWaitUntilFree(), which has
peculiar semantics. If the lock is immediately free, it grabs the lock and
returns true. If it's not free, it waits until it is released, but then
returns false without grabbing the lock. This is used in XLogFlush(), so
that when the lock is acquired, the backend flushes the WAL, but if it's
not, the backend first checks the current flush location before retrying.
Original patch and benchmarking by Peter Geoghegan and Simon Riggs, although
this patch as committed ended up being very different from that.
To make it wake up promptly when activity starts again, backends nudge it
by setting a latch in MarkBufferDirty(). The latch is kept set while
bgwriter is active, so there is very little overhead from that when the
system is busy. It is only armed before going into longer sleep.
Peter Geoghegan, with some changes by me.
We log AccessExclusiveLocks for replay onto standby nodes,
but because of timing issues on ProcArray it is possible to
log a lock that is still held by a just committed transaction
that is very soon to be removed. To avoid any timing issue we
avoid applying locks made by transactions with InvalidXid.
Simon Riggs, bug report Tom Lane, diagnosis Pavan Deolasee
Historically we've used the SWPB instruction for TAS() on ARM, but this
is deprecated and not available on ARMv6 and later. Instead, make use
of a GCC builtin if available. We'll still fall back to SWPB if not,
so as not to break existing ports using older GCC versions.
Eventually we might want to try using __sync_lock_test_and_set() on some
other architectures too, but for now that seems to present only risk and
not reward.
Back-patch to all supported versions, since people might want to use any
of them on more recent ARM chips.
Martin Pitt
Further testing convinces me that this is helpful at sufficiently high
contention levels, though it's still worrisome that it loses slightly
at lower contention levels.
Per Manabu Ori.
This is allegedly a win, at least on some PPC implementations, according
to the PPC ISA documents. However, as with LWARX hints, some PPC
platforms give an illegal-instruction failure. Use the same trick as
before of assuming that PPC64 platforms will accept it; we might need to
refine that based on experience, but there are other projects doing
likewise according to google.
I did not add an assembler compatibility test because LWSYNC has been
around much longer than hint bits, and it seems unlikely that any
toolchains currently in use don't recognize it.
Previously we defined slock_t as 8 bytes on PPC64, but the TAS assembly
code uses word-wide operations regardless, so that the second word was
just wasted space. There doesn't appear to be any performance benefit
in adding the second word, so get rid of it to simplify the code.
The hint bit makes for a small but measurable performance improvement
in access to contended spinlocks.
On the other hand, some PPC chips give an illegal-instruction failure.
There doesn't seem to be a completely bulletproof way to tell whether the
hint bit will cause an illegal-instruction failure other than by trying
it; but most if not all 64-bit PPC machines should accept it, so follow
the Linux kernel's lead and assume it's okay to use it in 64-bit builds.
Of course we must also check whether the assembler accepts the command,
since even with a recent CPU the toolchain could be old.
Patch by Manabu Ori, significantly modified by me.
This speeds up snapshot-taking and reduces ProcArrayLock contention.
Also, the PGPROC (and PGXACT) structures used by two-phase commit are
now allocated as part of the main array, rather than in a separate
array, and we keep ProcArray sorted in pointer order. These changes
are intended to minimize the number of cache lines that must be pulled
in to take a snapshot, and testing shows a substantial increase in
performance on both read and write workloads at high concurrencies.
Pavan Deolasee, Heikki Linnakangas, Robert Haas
This reverts commit 0180bd6180.
contrib/userlock is gone, but user-level locking still exists,
and is exposed via the pg_advisory* family of functions.
There was a timing window between when oldestActiveXid was derived
and when it should have been derived that only shows itself under
heavy load. Move code around to ensure correct timing of derivation.
No change to StartupSUBTRANS() code, which is where this failed.
Bug report by Chris Redekop
bgwriter is now a much less important process, responsible for page
cleaning duties only. checkpointer is now responsible for checkpoints
and so has a key role in shutdown. Later patches will correct doc
references to the now old idea that bgwriter performs checkpoints.
Has beneficial effect on performance at high write rates, but mainly
refactoring to more easily allow changes for power reduction by
simplifying previously tortuous code around required to allow page
cleaning and checkpointing to time slice in the same process.
Patch by me, Review by Dickson Guedes
We need not wait until the commit record is durably on disk, because
in the event of a crash the page we're updating with hint bits will
be gone anyway. Per off-list report from Heikki Linnakangas, this
can significantly degrade the performance of unlogged tables; I was
able to show a 2x speedup from this patch on a pgbench run with scale
factor 15. In practice, this will mostly help small, heavily updated
tables, because on larger tables you're unlikely to run into the same
row again before the commit record makes it out to disk.
A transaction can export a snapshot with pg_export_snapshot(), and then
others can import it with SET TRANSACTION SNAPSHOT. The data does not
leave the server so there are not security issues. A snapshot can only
be imported while the exporting transaction is still running, and there
are some other restrictions.
I'm not totally convinced that we've covered all the bases for SSI (true
serializable) mode, but it works fine for lesser isolation modes.
Joachim Wieland, reviewed by Marko Tiikkaja, and rather heavily modified
by Tom Lane
In REPEATABLE READ (nee SERIALIZABLE) mode, an attempt to do
GetTransactionSnapshot() between AbortTransaction and CleanupTransaction
failed, because GetTransactionSnapshot would recompute the transaction
snapshot (which is already wrong, given the isolation mode) and then
re-register it in the TopTransactionResourceOwner, leading to an Assert
because the TopTransactionResourceOwner should be empty of resources after
AbortTransaction. This is the root cause of bug #6218 from Yamamoto
Takashi. While changing plancache.c to avoid requesting a snapshot when
handling a ROLLBACK masks the problem, I think this is really a snapmgr.c
bug: it's lower-level than the resource manager mechanism and should not be
shutting itself down before we unwind resource manager resources. However,
just postponing the release of the transaction snapshot until cleanup time
didn't work because of the circular dependency with
TopTransactionResourceOwner. Fix by managing the internal reference to
that snapshot manually instead of depending on TopTransactionResourceOwner.
This saves a few cycles as well as making the module layering more
straightforward. predicate.c's dependencies on TopTransactionResourceOwner
go away too.
I think this is a longstanding bug, but there's no evidence that it's more
than a latent bug, so it doesn't seem worth any risk of back-patching.
This is not actually used anywhere yet, but it gets the basic
infrastructure in place. It is fairly likely that there are bugs, and
support for some important platforms may be missing, so we'll need to
refine this as we go along.
As per my recent proposal, this refactors things so that these typedefs and
macros are available in a header that can be included in frontend-ish code.
I also changed various headers that were undesirably including
utils/timestamp.h to include datatype/timestamp.h instead. Unsurprisingly,
this showed that half the system was getting utils/timestamp.h by way of
xlog.h.
No actual code changes here, just header refactoring.
walsender.h should depend on xlog.h, not vice versa. (Actually, the
inclusion was circular until a couple hours ago, which was even sillier;
but Bruce broke it in the expedient rather than logically correct
direction.) Because of that poor decision, plus blind application of
pgrminclude, we had a situation where half the system was depending on
xlog.h to include such unrelated stuff as array.h and guc.h. Clean up
the header inclusion, and manually revert a lot of what pgrminclude had
done so things build again.
This episode reinforces my feeling that pgrminclude should not be run
without adult supervision. Inclusion changes in header files in particular
need to be reviewed with great care. More generally, it'd be good if we
had a clearer notion of module layering to dictate which headers can sanely
include which others ... but that's a big task for another day.
storage/proc.h should not include replication/syncrep.h, especially not
when the latter includes storage/proc.h; but in any case this was a pretty
poor thing from a modular layering standpoint.
Per my testing, this works just as well with gcc as it does with HP's
compiler; and there is no reason to think that the effect doesn't occur
with icc, either.
Also, rewrite the header comment about enforcing sequencing around spinlock
operations, per Robert's gripe that it was misleading.
At least on this architecture, it's very important to spin on a
non-atomic instruction and only retry the atomic once it appears
that it will succeed. To fix this, split TAS() into two macros:
TAS(), for trying to grab the lock the first time, and TAS_SPIN(),
for spinning until we get it. TAS_SPIN() defaults to same as TAS(),
but we can override it when we know there's a better way.
It's likely that some of the other cases in s_lock.h require
similar treatment, but this is the only one we've got conclusive
evidence for at present.
This requires adjusting the API for syscache callback functions: they now
get a hash value, not a TID, to identify the target tuple. Most of them
weren't paying any attention to that argument anyway, but plancache did
require a small amount of fixing.
Also, improve performance a trifle by avoiding sending duplicate inval
messages when a heap_update isn't changing the catcache lookup columns.
In pursuit of this (and with the expectation that WaitLatch will be needed
in more places), convert the latch field that was already added to PGPROC
for sync rep into a generic latch that is activated for all PGPROC-owning
processes, and change many of the standard backend signal handlers to set
that latch when a signal happens. This will allow WaitLatch callers to be
wakened properly by these signals.
In passing, fix a whole bunch of signal handlers that had been hacked to do
things that might change errno, without adding the necessary save/restore
logic for errno. Also make some minor fixes in unix_latch.c, and clean
up bizarre and unsafe scheme for disowning the process's latch. Much of
this has to be back-patched into 9.1.
Peter Geoghegan, with additional work by Tom
Improve the documentation around weak-memory-ordering risks, and do a pass
of general editorialization on the comments in the latch code. Make the
Windows latch code more like the Unix latch code where feasible; in
particular provide the same Assert checks in both implementations.
Fix poorly-placed WaitLatch call in syncrep.c.
This patch resolves, for the moment, concerns around weak-memory-ordering
bugs in latch-related code: we have documented the restrictions and checked
that existing calls meet them. In 9.2 I hope that we will install suitable
memory barrier instructions in SetLatch/ResetLatch, so that their callers
don't need to be quite so careful.
Instead of entering them on transaction startup, we materialize them
only when someone wants to wait, which will occur only during CREATE
INDEX CONCURRENTLY. In Hot Standby mode, the startup process must also
be able to probe for conflicting VXID locks, but the lock need never be
fully materialized, because the startup process does not use the normal
lock wait mechanism. Since most VXID locks never need to touch the
lock manager partition locks, this can significantly reduce blocking
contention on read-heavy workloads.
Patch by me. Review by Jeff Davis.