postgresql/src/backend/executor/nodeValuesscan.c
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00

316 lines
8.1 KiB
C

/*-------------------------------------------------------------------------
*
* nodeValuesscan.c
* Support routines for scanning Values lists
* ("VALUES (...), (...), ..." in rangetable).
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeValuesscan.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecValuesScan scans a values list.
* ExecValuesNext retrieve next tuple in sequential order.
* ExecInitValuesScan creates and initializes a valuesscan node.
* ExecEndValuesScan releases any storage allocated.
* ExecReScanValuesScan rescans the values list
*/
#include "postgres.h"
#include "executor/executor.h"
#include "executor/nodeValuesscan.h"
#include "utils/expandeddatum.h"
static TupleTableSlot *ValuesNext(ValuesScanState *node);
/* ----------------------------------------------------------------
* Scan Support
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ValuesNext
*
* This is a workhorse for ExecValuesScan
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ValuesNext(ValuesScanState *node)
{
TupleTableSlot *slot;
EState *estate;
ExprContext *econtext;
ScanDirection direction;
List *exprlist;
/*
* get information from the estate and scan state
*/
estate = node->ss.ps.state;
direction = estate->es_direction;
slot = node->ss.ss_ScanTupleSlot;
econtext = node->rowcontext;
/*
* Get the next tuple. Return NULL if no more tuples.
*/
if (ScanDirectionIsForward(direction))
{
if (node->curr_idx < node->array_len)
node->curr_idx++;
if (node->curr_idx < node->array_len)
exprlist = node->exprlists[node->curr_idx];
else
exprlist = NIL;
}
else
{
if (node->curr_idx >= 0)
node->curr_idx--;
if (node->curr_idx >= 0)
exprlist = node->exprlists[node->curr_idx];
else
exprlist = NIL;
}
/*
* Always clear the result slot; this is appropriate if we are at the end
* of the data, and if we're not, we still need it as the first step of
* the store-virtual-tuple protocol. It seems wise to clear the slot
* before we reset the context it might have pointers into.
*/
ExecClearTuple(slot);
if (exprlist)
{
MemoryContext oldContext;
List *exprstatelist;
Datum *values;
bool *isnull;
Form_pg_attribute *att;
ListCell *lc;
int resind;
/*
* Get rid of any prior cycle's leftovers. We use ReScanExprContext
* not just ResetExprContext because we want any registered shutdown
* callbacks to be called.
*/
ReScanExprContext(econtext);
/*
* Build the expression eval state in the econtext's per-tuple memory.
* This is a tad unusual, but we want to delete the eval state again
* when we move to the next row, to avoid growth of memory
* requirements over a long values list.
*/
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* Pass NULL, not my plan node, because we don't want anything in this
* transient state linking into permanent state. The only possibility
* is a SubPlan, and there shouldn't be any (any subselects in the
* VALUES list should be InitPlans).
*/
exprstatelist = ExecInitExprList(exprlist, NULL);
/* parser should have checked all sublists are the same length */
Assert(list_length(exprstatelist) == slot->tts_tupleDescriptor->natts);
/*
* Compute the expressions and build a virtual result tuple. We
* already did ExecClearTuple(slot).
*/
values = slot->tts_values;
isnull = slot->tts_isnull;
att = slot->tts_tupleDescriptor->attrs;
resind = 0;
foreach(lc, exprstatelist)
{
ExprState *estate = (ExprState *) lfirst(lc);
values[resind] = ExecEvalExpr(estate,
econtext,
&isnull[resind]);
/*
* We must force any R/W expanded datums to read-only state, in
* case they are multiply referenced in the plan node's output
* expressions, or in case we skip the output projection and the
* output column is multiply referenced in higher plan nodes.
*/
values[resind] = MakeExpandedObjectReadOnly(values[resind],
isnull[resind],
att[resind]->attlen);
resind++;
}
MemoryContextSwitchTo(oldContext);
/*
* And return the virtual tuple.
*/
ExecStoreVirtualTuple(slot);
}
return slot;
}
/*
* ValuesRecheck -- access method routine to recheck a tuple in EvalPlanQual
*/
static bool
ValuesRecheck(ValuesScanState *node, TupleTableSlot *slot)
{
/* nothing to check */
return true;
}
/* ----------------------------------------------------------------
* ExecValuesScan(node)
*
* Scans the values lists sequentially and returns the next qualifying
* tuple.
* We call the ExecScan() routine and pass it the appropriate
* access method functions.
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecValuesScan(ValuesScanState *node)
{
return ExecScan(&node->ss,
(ExecScanAccessMtd) ValuesNext,
(ExecScanRecheckMtd) ValuesRecheck);
}
/* ----------------------------------------------------------------
* ExecInitValuesScan
* ----------------------------------------------------------------
*/
ValuesScanState *
ExecInitValuesScan(ValuesScan *node, EState *estate, int eflags)
{
ValuesScanState *scanstate;
TupleDesc tupdesc;
ListCell *vtl;
int i;
PlanState *planstate;
/*
* ValuesScan should not have any children.
*/
Assert(outerPlan(node) == NULL);
Assert(innerPlan(node) == NULL);
/*
* create new ScanState for node
*/
scanstate = makeNode(ValuesScanState);
scanstate->ss.ps.plan = (Plan *) node;
scanstate->ss.ps.state = estate;
/*
* Miscellaneous initialization
*/
planstate = &scanstate->ss.ps;
/*
* Create expression contexts. We need two, one for per-sublist
* processing and one for execScan.c to use for quals and projections. We
* cheat a little by using ExecAssignExprContext() to build both.
*/
ExecAssignExprContext(estate, planstate);
scanstate->rowcontext = planstate->ps_ExprContext;
ExecAssignExprContext(estate, planstate);
/*
* tuple table initialization
*/
ExecInitResultTupleSlot(estate, &scanstate->ss.ps);
ExecInitScanTupleSlot(estate, &scanstate->ss);
/*
* initialize child expressions
*/
scanstate->ss.ps.qual =
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
/*
* get info about values list
*/
tupdesc = ExecTypeFromExprList((List *) linitial(node->values_lists));
ExecAssignScanType(&scanstate->ss, tupdesc);
/*
* Other node-specific setup
*/
scanstate->curr_idx = -1;
scanstate->array_len = list_length(node->values_lists);
/* convert list of sublists into array of sublists for easy addressing */
scanstate->exprlists = (List **)
palloc(scanstate->array_len * sizeof(List *));
i = 0;
foreach(vtl, node->values_lists)
{
scanstate->exprlists[i++] = (List *) lfirst(vtl);
}
/*
* Initialize result tuple type and projection info.
*/
ExecAssignResultTypeFromTL(&scanstate->ss.ps);
ExecAssignScanProjectionInfo(&scanstate->ss);
return scanstate;
}
/* ----------------------------------------------------------------
* ExecEndValuesScan
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndValuesScan(ValuesScanState *node)
{
/*
* Free both exprcontexts
*/
ExecFreeExprContext(&node->ss.ps);
node->ss.ps.ps_ExprContext = node->rowcontext;
ExecFreeExprContext(&node->ss.ps);
/*
* clean out the tuple table
*/
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
}
/* ----------------------------------------------------------------
* ExecReScanValuesScan
*
* Rescans the relation.
* ----------------------------------------------------------------
*/
void
ExecReScanValuesScan(ValuesScanState *node)
{
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecScanReScan(&node->ss);
node->curr_idx = -1;
}