mirror of
https://github.com/postgres/postgres.git
synced 2026-02-11 23:03:25 -05:00
Instead of changing the tuple xmin to FrozenTransactionId, the combination of HEAP_XMIN_COMMITTED and HEAP_XMIN_INVALID, which were previously never set together, is now defined as HEAP_XMIN_FROZEN. A variety of previous proposals to freeze tuples opportunistically before vacuum_freeze_min_age is reached have foundered on the objection that replacing xmin by FrozenTransactionId might hinder debugging efforts when things in this area go awry; this patch is intended to solve that problem by keeping the XID around (but largely ignoring the value to which it is set). Third-party code that checks for HEAP_XMIN_INVALID on tuples where HEAP_XMIN_COMMITTED might be set will be broken by this change. To fix, use the new accessor macros in htup_details.h rather than consulting the bits directly. HeapTupleHeaderGetXmin has been modified to return FrozenTransactionId when the infomask bits indicate that the tuple is frozen; use HeapTupleHeaderGetRawXmin when you already know that the tuple isn't marked commited or frozen, or want the raw value anyway. We currently do this in routines that display the xmin for user consumption, in tqual.c where it's known to be safe and important for the avoidance of extra cycles, and in the function-caching code for various procedural languages, which shouldn't invalidate the cache just because the tuple gets frozen. Robert Haas and Andres Freund
534 lines
13 KiB
C
534 lines
13 KiB
C
/*
|
|
* Python procedure manipulation for plpython
|
|
*
|
|
* src/pl/plpython/plpy_procedure.c
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/transam.h"
|
|
#include "funcapi.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/hsearch.h"
|
|
#include "utils/syscache.h"
|
|
|
|
#include "plpython.h"
|
|
|
|
#include "plpy_procedure.h"
|
|
|
|
#include "plpy_elog.h"
|
|
#include "plpy_main.h"
|
|
|
|
|
|
static HTAB *PLy_procedure_cache = NULL;
|
|
|
|
static PLyProcedure *PLy_procedure_create(HeapTuple procTup, Oid fn_oid, bool is_trigger);
|
|
static bool PLy_procedure_argument_valid(PLyTypeInfo *arg);
|
|
static bool PLy_procedure_valid(PLyProcedure *proc, HeapTuple procTup);
|
|
static char *PLy_procedure_munge_source(const char *name, const char *src);
|
|
|
|
|
|
void
|
|
init_procedure_caches(void)
|
|
{
|
|
HASHCTL hash_ctl;
|
|
|
|
memset(&hash_ctl, 0, sizeof(hash_ctl));
|
|
hash_ctl.keysize = sizeof(PLyProcedureKey);
|
|
hash_ctl.entrysize = sizeof(PLyProcedureEntry);
|
|
hash_ctl.hash = tag_hash;
|
|
PLy_procedure_cache = hash_create("PL/Python procedures", 32, &hash_ctl,
|
|
HASH_ELEM | HASH_FUNCTION);
|
|
}
|
|
|
|
/*
|
|
* Get the name of the last procedure called by the backend (the
|
|
* innermost, if a plpython procedure call calls the backend and the
|
|
* backend calls another plpython procedure).
|
|
*
|
|
* NB: this returns the SQL name, not the internal Python procedure name
|
|
*/
|
|
char *
|
|
PLy_procedure_name(PLyProcedure *proc)
|
|
{
|
|
if (proc == NULL)
|
|
return "<unknown procedure>";
|
|
return proc->proname;
|
|
}
|
|
|
|
/*
|
|
* PLy_procedure_get: returns a cached PLyProcedure, or creates, stores and
|
|
* returns a new PLyProcedure.
|
|
*
|
|
* fn_oid is the OID of the function requested
|
|
* fn_rel is InvalidOid or the relation this function triggers on
|
|
* is_trigger denotes whether the function is a trigger function
|
|
*
|
|
* The reason that both fn_rel and is_trigger need to be passed is that when
|
|
* trigger functions get validated we don't know which relation(s) they'll
|
|
* be used with, so no sensible fn_rel can be passed.
|
|
*/
|
|
PLyProcedure *
|
|
PLy_procedure_get(Oid fn_oid, Oid fn_rel, bool is_trigger)
|
|
{
|
|
bool use_cache = !(is_trigger && fn_rel == InvalidOid);
|
|
HeapTuple procTup;
|
|
PLyProcedureKey key;
|
|
PLyProcedureEntry *volatile entry = NULL;
|
|
PLyProcedure *volatile proc = NULL;
|
|
bool found = false;
|
|
|
|
procTup = SearchSysCache1(PROCOID, ObjectIdGetDatum(fn_oid));
|
|
if (!HeapTupleIsValid(procTup))
|
|
elog(ERROR, "cache lookup failed for function %u", fn_oid);
|
|
|
|
/*
|
|
* Look for the function in the cache, unless we don't have the necessary
|
|
* information (e.g. during validation). In that case we just don't cache
|
|
* anything.
|
|
*/
|
|
if (use_cache)
|
|
{
|
|
key.fn_oid = fn_oid;
|
|
key.fn_rel = fn_rel;
|
|
entry = hash_search(PLy_procedure_cache, &key, HASH_ENTER, &found);
|
|
proc = entry->proc;
|
|
}
|
|
|
|
PG_TRY();
|
|
{
|
|
if (!found)
|
|
{
|
|
/* Haven't found it, create a new procedure */
|
|
proc = PLy_procedure_create(procTup, fn_oid, is_trigger);
|
|
if (use_cache)
|
|
entry->proc = proc;
|
|
}
|
|
else if (!PLy_procedure_valid(proc, procTup))
|
|
{
|
|
/* Found it, but it's invalid, free and reuse the cache entry */
|
|
PLy_procedure_delete(proc);
|
|
PLy_free(proc);
|
|
proc = PLy_procedure_create(procTup, fn_oid, is_trigger);
|
|
entry->proc = proc;
|
|
}
|
|
/* Found it and it's valid, it's fine to use it */
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
/* Do not leave an uninitialised entry in the cache */
|
|
if (use_cache)
|
|
hash_search(PLy_procedure_cache, &key, HASH_REMOVE, NULL);
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
ReleaseSysCache(procTup);
|
|
|
|
return proc;
|
|
}
|
|
|
|
/*
|
|
* Create a new PLyProcedure structure
|
|
*/
|
|
static PLyProcedure *
|
|
PLy_procedure_create(HeapTuple procTup, Oid fn_oid, bool is_trigger)
|
|
{
|
|
char procName[NAMEDATALEN + 256];
|
|
Form_pg_proc procStruct;
|
|
PLyProcedure *volatile proc;
|
|
char *volatile procSource = NULL;
|
|
Datum prosrcdatum;
|
|
bool isnull;
|
|
int i,
|
|
rv;
|
|
|
|
procStruct = (Form_pg_proc) GETSTRUCT(procTup);
|
|
rv = snprintf(procName, sizeof(procName),
|
|
"__plpython_procedure_%s_%u",
|
|
NameStr(procStruct->proname),
|
|
fn_oid);
|
|
if (rv >= sizeof(procName) || rv < 0)
|
|
elog(ERROR, "procedure name would overrun buffer");
|
|
|
|
proc = PLy_malloc(sizeof(PLyProcedure));
|
|
proc->proname = PLy_strdup(NameStr(procStruct->proname));
|
|
proc->pyname = PLy_strdup(procName);
|
|
proc->fn_xmin = HeapTupleHeaderGetRawXmin(procTup->t_data);
|
|
proc->fn_tid = procTup->t_self;
|
|
/* Remember if function is STABLE/IMMUTABLE */
|
|
proc->fn_readonly =
|
|
(procStruct->provolatile != PROVOLATILE_VOLATILE);
|
|
PLy_typeinfo_init(&proc->result);
|
|
for (i = 0; i < FUNC_MAX_ARGS; i++)
|
|
PLy_typeinfo_init(&proc->args[i]);
|
|
proc->nargs = 0;
|
|
proc->code = proc->statics = NULL;
|
|
proc->globals = NULL;
|
|
proc->is_setof = procStruct->proretset;
|
|
proc->setof = NULL;
|
|
proc->src = NULL;
|
|
proc->argnames = NULL;
|
|
|
|
PG_TRY();
|
|
{
|
|
/*
|
|
* get information required for output conversion of the return value,
|
|
* but only if this isn't a trigger.
|
|
*/
|
|
if (!is_trigger)
|
|
{
|
|
HeapTuple rvTypeTup;
|
|
Form_pg_type rvTypeStruct;
|
|
|
|
rvTypeTup = SearchSysCache1(TYPEOID,
|
|
ObjectIdGetDatum(procStruct->prorettype));
|
|
if (!HeapTupleIsValid(rvTypeTup))
|
|
elog(ERROR, "cache lookup failed for type %u",
|
|
procStruct->prorettype);
|
|
rvTypeStruct = (Form_pg_type) GETSTRUCT(rvTypeTup);
|
|
|
|
/* Disallow pseudotype result, except for void or record */
|
|
if (rvTypeStruct->typtype == TYPTYPE_PSEUDO)
|
|
{
|
|
if (procStruct->prorettype == TRIGGEROID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("trigger functions can only be called as triggers")));
|
|
else if (procStruct->prorettype != VOIDOID &&
|
|
procStruct->prorettype != RECORDOID)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("PL/Python functions cannot return type %s",
|
|
format_type_be(procStruct->prorettype))));
|
|
}
|
|
|
|
if (rvTypeStruct->typtype == TYPTYPE_COMPOSITE ||
|
|
procStruct->prorettype == RECORDOID)
|
|
{
|
|
/*
|
|
* Tuple: set up later, during first call to
|
|
* PLy_function_handler
|
|
*/
|
|
proc->result.out.d.typoid = procStruct->prorettype;
|
|
proc->result.out.d.typmod = -1;
|
|
proc->result.is_rowtype = 2;
|
|
}
|
|
else
|
|
{
|
|
/* do the real work */
|
|
PLy_output_datum_func(&proc->result, rvTypeTup);
|
|
}
|
|
|
|
ReleaseSysCache(rvTypeTup);
|
|
}
|
|
|
|
/*
|
|
* Now get information required for input conversion of the
|
|
* procedure's arguments. Note that we ignore output arguments here.
|
|
* If the function returns record, those I/O functions will be set up
|
|
* when the function is first called.
|
|
*/
|
|
if (procStruct->pronargs)
|
|
{
|
|
Oid *types;
|
|
char **names,
|
|
*modes;
|
|
int i,
|
|
pos,
|
|
total;
|
|
|
|
/* extract argument type info from the pg_proc tuple */
|
|
total = get_func_arg_info(procTup, &types, &names, &modes);
|
|
|
|
/* count number of in+inout args into proc->nargs */
|
|
if (modes == NULL)
|
|
proc->nargs = total;
|
|
else
|
|
{
|
|
/* proc->nargs was initialized to 0 above */
|
|
for (i = 0; i < total; i++)
|
|
{
|
|
if (modes[i] != PROARGMODE_OUT &&
|
|
modes[i] != PROARGMODE_TABLE)
|
|
(proc->nargs)++;
|
|
}
|
|
}
|
|
|
|
proc->argnames = (char **) PLy_malloc0(sizeof(char *) * proc->nargs);
|
|
for (i = pos = 0; i < total; i++)
|
|
{
|
|
HeapTuple argTypeTup;
|
|
Form_pg_type argTypeStruct;
|
|
|
|
if (modes &&
|
|
(modes[i] == PROARGMODE_OUT ||
|
|
modes[i] == PROARGMODE_TABLE))
|
|
continue; /* skip OUT arguments */
|
|
|
|
Assert(types[i] == procStruct->proargtypes.values[pos]);
|
|
|
|
argTypeTup = SearchSysCache1(TYPEOID,
|
|
ObjectIdGetDatum(types[i]));
|
|
if (!HeapTupleIsValid(argTypeTup))
|
|
elog(ERROR, "cache lookup failed for type %u", types[i]);
|
|
argTypeStruct = (Form_pg_type) GETSTRUCT(argTypeTup);
|
|
|
|
/* check argument type is OK, set up I/O function info */
|
|
switch (argTypeStruct->typtype)
|
|
{
|
|
case TYPTYPE_PSEUDO:
|
|
/* Disallow pseudotype argument */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("PL/Python functions cannot accept type %s",
|
|
format_type_be(types[i]))));
|
|
break;
|
|
case TYPTYPE_COMPOSITE:
|
|
/* we'll set IO funcs at first call */
|
|
proc->args[pos].is_rowtype = 2;
|
|
break;
|
|
default:
|
|
PLy_input_datum_func(&(proc->args[pos]),
|
|
types[i],
|
|
argTypeTup);
|
|
break;
|
|
}
|
|
|
|
/* get argument name */
|
|
proc->argnames[pos] = names ? PLy_strdup(names[i]) : NULL;
|
|
|
|
ReleaseSysCache(argTypeTup);
|
|
|
|
pos++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* get the text of the function.
|
|
*/
|
|
prosrcdatum = SysCacheGetAttr(PROCOID, procTup,
|
|
Anum_pg_proc_prosrc, &isnull);
|
|
if (isnull)
|
|
elog(ERROR, "null prosrc");
|
|
procSource = TextDatumGetCString(prosrcdatum);
|
|
|
|
PLy_procedure_compile(proc, procSource);
|
|
|
|
pfree(procSource);
|
|
procSource = NULL;
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
PLy_procedure_delete(proc);
|
|
if (procSource)
|
|
pfree(procSource);
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
return proc;
|
|
}
|
|
|
|
/*
|
|
* Insert the procedure into the Python interpreter
|
|
*/
|
|
void
|
|
PLy_procedure_compile(PLyProcedure *proc, const char *src)
|
|
{
|
|
PyObject *crv = NULL;
|
|
char *msrc;
|
|
|
|
proc->globals = PyDict_Copy(PLy_interp_globals);
|
|
|
|
/*
|
|
* SD is private preserved data between calls. GD is global data shared by
|
|
* all functions
|
|
*/
|
|
proc->statics = PyDict_New();
|
|
PyDict_SetItemString(proc->globals, "SD", proc->statics);
|
|
|
|
/*
|
|
* insert the function code into the interpreter
|
|
*/
|
|
msrc = PLy_procedure_munge_source(proc->pyname, src);
|
|
/* Save the mangled source for later inclusion in tracebacks */
|
|
proc->src = PLy_strdup(msrc);
|
|
crv = PyRun_String(msrc, Py_file_input, proc->globals, NULL);
|
|
pfree(msrc);
|
|
|
|
if (crv != NULL)
|
|
{
|
|
int clen;
|
|
char call[NAMEDATALEN + 256];
|
|
|
|
Py_DECREF(crv);
|
|
|
|
/*
|
|
* compile a call to the function
|
|
*/
|
|
clen = snprintf(call, sizeof(call), "%s()", proc->pyname);
|
|
if (clen < 0 || clen >= sizeof(call))
|
|
elog(ERROR, "string would overflow buffer");
|
|
proc->code = Py_CompileString(call, "<string>", Py_eval_input);
|
|
if (proc->code != NULL)
|
|
return;
|
|
}
|
|
|
|
if (proc->proname)
|
|
PLy_elog(ERROR, "could not compile PL/Python function \"%s\"",
|
|
proc->proname);
|
|
else
|
|
PLy_elog(ERROR, "could not compile anonymous PL/Python code block");
|
|
}
|
|
|
|
void
|
|
PLy_procedure_delete(PLyProcedure *proc)
|
|
{
|
|
int i;
|
|
|
|
Py_XDECREF(proc->code);
|
|
Py_XDECREF(proc->statics);
|
|
Py_XDECREF(proc->globals);
|
|
if (proc->proname)
|
|
PLy_free(proc->proname);
|
|
if (proc->pyname)
|
|
PLy_free(proc->pyname);
|
|
for (i = 0; i < proc->nargs; i++)
|
|
{
|
|
if (proc->args[i].is_rowtype == 1)
|
|
{
|
|
if (proc->args[i].in.r.atts)
|
|
PLy_free(proc->args[i].in.r.atts);
|
|
if (proc->args[i].out.r.atts)
|
|
PLy_free(proc->args[i].out.r.atts);
|
|
}
|
|
if (proc->argnames && proc->argnames[i])
|
|
PLy_free(proc->argnames[i]);
|
|
}
|
|
if (proc->src)
|
|
PLy_free(proc->src);
|
|
if (proc->argnames)
|
|
PLy_free(proc->argnames);
|
|
}
|
|
|
|
/*
|
|
* Check if our cached information about a datatype is still valid
|
|
*/
|
|
static bool
|
|
PLy_procedure_argument_valid(PLyTypeInfo *arg)
|
|
{
|
|
HeapTuple relTup;
|
|
bool valid;
|
|
|
|
/* Nothing to cache unless type is composite */
|
|
if (arg->is_rowtype != 1)
|
|
return true;
|
|
|
|
/*
|
|
* Zero typ_relid means that we got called on an output argument of a
|
|
* function returning a unnamed record type; the info for it can't change.
|
|
*/
|
|
if (!OidIsValid(arg->typ_relid))
|
|
return true;
|
|
|
|
/* Else we should have some cached data */
|
|
Assert(TransactionIdIsValid(arg->typrel_xmin));
|
|
Assert(ItemPointerIsValid(&arg->typrel_tid));
|
|
|
|
/* Get the pg_class tuple for the data type */
|
|
relTup = SearchSysCache1(RELOID, ObjectIdGetDatum(arg->typ_relid));
|
|
if (!HeapTupleIsValid(relTup))
|
|
elog(ERROR, "cache lookup failed for relation %u", arg->typ_relid);
|
|
|
|
/* If it has changed, the cached data is not valid */
|
|
valid = (arg->typrel_xmin == HeapTupleHeaderGetRawXmin(relTup->t_data) &&
|
|
ItemPointerEquals(&arg->typrel_tid, &relTup->t_self));
|
|
|
|
ReleaseSysCache(relTup);
|
|
|
|
return valid;
|
|
}
|
|
|
|
/*
|
|
* Decide whether a cached PLyProcedure struct is still valid
|
|
*/
|
|
static bool
|
|
PLy_procedure_valid(PLyProcedure *proc, HeapTuple procTup)
|
|
{
|
|
int i;
|
|
bool valid;
|
|
|
|
Assert(proc != NULL);
|
|
|
|
/* If the pg_proc tuple has changed, it's not valid */
|
|
if (!(proc->fn_xmin == HeapTupleHeaderGetRawXmin(procTup->t_data) &&
|
|
ItemPointerEquals(&proc->fn_tid, &procTup->t_self)))
|
|
return false;
|
|
|
|
/* Else check the input argument datatypes */
|
|
valid = true;
|
|
for (i = 0; i < proc->nargs; i++)
|
|
{
|
|
valid = PLy_procedure_argument_valid(&proc->args[i]);
|
|
|
|
/* Short-circuit on first changed argument */
|
|
if (!valid)
|
|
break;
|
|
}
|
|
|
|
/* if the output type is composite, it might have changed */
|
|
if (valid)
|
|
valid = PLy_procedure_argument_valid(&proc->result);
|
|
|
|
return valid;
|
|
}
|
|
|
|
static char *
|
|
PLy_procedure_munge_source(const char *name, const char *src)
|
|
{
|
|
char *mrc,
|
|
*mp;
|
|
const char *sp;
|
|
size_t mlen;
|
|
int plen;
|
|
|
|
/*
|
|
* room for function source and the def statement
|
|
*/
|
|
mlen = (strlen(src) * 2) + strlen(name) + 16;
|
|
|
|
mrc = palloc(mlen);
|
|
plen = snprintf(mrc, mlen, "def %s():\n\t", name);
|
|
Assert(plen >= 0 && plen < mlen);
|
|
|
|
sp = src;
|
|
mp = mrc + plen;
|
|
|
|
while (*sp != '\0')
|
|
{
|
|
if (*sp == '\r' && *(sp + 1) == '\n')
|
|
sp++;
|
|
|
|
if (*sp == '\n' || *sp == '\r')
|
|
{
|
|
*mp++ = '\n';
|
|
*mp++ = '\t';
|
|
sp++;
|
|
}
|
|
else
|
|
*mp++ = *sp++;
|
|
}
|
|
*mp++ = '\n';
|
|
*mp++ = '\n';
|
|
*mp = '\0';
|
|
|
|
if (mp > (mrc + mlen))
|
|
elog(FATAL, "buffer overrun in PLy_munge_source");
|
|
|
|
return mrc;
|
|
}
|