postgresql/src/backend/bootstrap/bootstrap.c
Heikki Linnakangas a78af04270 Assign a child slot to every postmaster child process
Previously, only backends, autovacuum workers, and background workers
had an entry in the PMChildFlags array. With this commit, all
postmaster child processes, including all the aux processes, have an
entry. Dead-end backends still don't get an entry, though, and other
processes that don't touch shared memory will never mark their
PMChildFlags entry as active.

We now maintain separate freelists for different kinds of child
processes. That ensures that there are always slots available for
autovacuum and background workers. Previously, pre-authentication
backends could prevent autovacuum or background workers from starting
up, by using up all the slots.

The code to manage the slots in the postmaster process is in a new
pmchild.c source file. Because postmaster.c is just so large.
Assigning pmsignal slot numbers is now pmchild.c's responsibility.
This replaces the PMChildInUse array in pmsignal.c.

Some of the comments in postmaster.c still talked about the "stats
process", but that was removed in commit 5891c7a8ed. Fix those while
we're at it.

Reviewed-by: Andres Freund <andres@anarazel.de>
Discussion: https://www.postgresql.org/message-id/a102f15f-eac4-4ff2-af02-f9ff209ec66f@iki.fi
2024-11-14 16:12:28 +02:00

976 lines
25 KiB
C

/*-------------------------------------------------------------------------
*
* bootstrap.c
* routines to support running postgres in 'bootstrap' mode
* bootstrap mode is used to create the initial template database
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/bootstrap/bootstrap.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include <signal.h>
#include "access/genam.h"
#include "access/heapam.h"
#include "access/htup_details.h"
#include "access/tableam.h"
#include "access/toast_compression.h"
#include "access/xact.h"
#include "bootstrap/bootstrap.h"
#include "catalog/index.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_type.h"
#include "common/link-canary.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "pg_getopt.h"
#include "postmaster/postmaster.h"
#include "storage/bufpage.h"
#include "storage/ipc.h"
#include "storage/proc.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/guc.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/relmapper.h"
static void CheckerModeMain(void);
static void bootstrap_signals(void);
static Form_pg_attribute AllocateAttribute(void);
static void populate_typ_list(void);
static Oid gettype(char *type);
static void cleanup(void);
/* ----------------
* global variables
* ----------------
*/
Relation boot_reldesc; /* current relation descriptor */
Form_pg_attribute attrtypes[MAXATTR]; /* points to attribute info */
int numattr; /* number of attributes for cur. rel */
/*
* Basic information associated with each type. This is used before
* pg_type is filled, so it has to cover the datatypes used as column types
* in the core "bootstrapped" catalogs.
*
* XXX several of these input/output functions do catalog scans
* (e.g., F_REGPROCIN scans pg_proc). this obviously creates some
* order dependencies in the catalog creation process.
*/
struct typinfo
{
char name[NAMEDATALEN];
Oid oid;
Oid elem;
int16 len;
bool byval;
char align;
char storage;
Oid collation;
Oid inproc;
Oid outproc;
};
static const struct typinfo TypInfo[] = {
{"bool", BOOLOID, 0, 1, true, TYPALIGN_CHAR, TYPSTORAGE_PLAIN, InvalidOid,
F_BOOLIN, F_BOOLOUT},
{"bytea", BYTEAOID, 0, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, InvalidOid,
F_BYTEAIN, F_BYTEAOUT},
{"char", CHAROID, 0, 1, true, TYPALIGN_CHAR, TYPSTORAGE_PLAIN, InvalidOid,
F_CHARIN, F_CHAROUT},
{"int2", INT2OID, 0, 2, true, TYPALIGN_SHORT, TYPSTORAGE_PLAIN, InvalidOid,
F_INT2IN, F_INT2OUT},
{"int4", INT4OID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_INT4IN, F_INT4OUT},
{"float4", FLOAT4OID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_FLOAT4IN, F_FLOAT4OUT},
{"name", NAMEOID, CHAROID, NAMEDATALEN, false, TYPALIGN_CHAR, TYPSTORAGE_PLAIN, C_COLLATION_OID,
F_NAMEIN, F_NAMEOUT},
{"regclass", REGCLASSOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_REGCLASSIN, F_REGCLASSOUT},
{"regproc", REGPROCOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_REGPROCIN, F_REGPROCOUT},
{"regtype", REGTYPEOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_REGTYPEIN, F_REGTYPEOUT},
{"regrole", REGROLEOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_REGROLEIN, F_REGROLEOUT},
{"regnamespace", REGNAMESPACEOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_REGNAMESPACEIN, F_REGNAMESPACEOUT},
{"text", TEXTOID, 0, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, DEFAULT_COLLATION_OID,
F_TEXTIN, F_TEXTOUT},
{"oid", OIDOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_OIDIN, F_OIDOUT},
{"tid", TIDOID, 0, 6, false, TYPALIGN_SHORT, TYPSTORAGE_PLAIN, InvalidOid,
F_TIDIN, F_TIDOUT},
{"xid", XIDOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_XIDIN, F_XIDOUT},
{"cid", CIDOID, 0, 4, true, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_CIDIN, F_CIDOUT},
{"pg_node_tree", PG_NODE_TREEOID, 0, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, DEFAULT_COLLATION_OID,
F_PG_NODE_TREE_IN, F_PG_NODE_TREE_OUT},
{"int2vector", INT2VECTOROID, INT2OID, -1, false, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_INT2VECTORIN, F_INT2VECTOROUT},
{"oidvector", OIDVECTOROID, OIDOID, -1, false, TYPALIGN_INT, TYPSTORAGE_PLAIN, InvalidOid,
F_OIDVECTORIN, F_OIDVECTOROUT},
{"_int4", INT4ARRAYOID, INT4OID, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, InvalidOid,
F_ARRAY_IN, F_ARRAY_OUT},
{"_text", 1009, TEXTOID, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, DEFAULT_COLLATION_OID,
F_ARRAY_IN, F_ARRAY_OUT},
{"_oid", 1028, OIDOID, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, InvalidOid,
F_ARRAY_IN, F_ARRAY_OUT},
{"_char", 1002, CHAROID, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, InvalidOid,
F_ARRAY_IN, F_ARRAY_OUT},
{"_aclitem", 1034, ACLITEMOID, -1, false, TYPALIGN_INT, TYPSTORAGE_EXTENDED, InvalidOid,
F_ARRAY_IN, F_ARRAY_OUT}
};
static const int n_types = sizeof(TypInfo) / sizeof(struct typinfo);
struct typmap
{ /* a hack */
Oid am_oid;
FormData_pg_type am_typ;
};
static List *Typ = NIL; /* List of struct typmap* */
static struct typmap *Ap = NULL;
static Datum values[MAXATTR]; /* current row's attribute values */
static bool Nulls[MAXATTR];
static MemoryContext nogc = NULL; /* special no-gc mem context */
/*
* At bootstrap time, we first declare all the indices to be built, and
* then build them. The IndexList structure stores enough information
* to allow us to build the indices after they've been declared.
*/
typedef struct _IndexList
{
Oid il_heap;
Oid il_ind;
IndexInfo *il_info;
struct _IndexList *il_next;
} IndexList;
static IndexList *ILHead = NULL;
/*
* In shared memory checker mode, all we really want to do is create shared
* memory and semaphores (just to prove we can do it with the current GUC
* settings). Since, in fact, that was already done by
* CreateSharedMemoryAndSemaphores(), we have nothing more to do here.
*/
static void
CheckerModeMain(void)
{
proc_exit(0);
}
/*
* The main entry point for running the backend in bootstrap mode
*
* The bootstrap mode is used to initialize the template database.
* The bootstrap backend doesn't speak SQL, but instead expects
* commands in a special bootstrap language.
*
* When check_only is true, startup is done only far enough to verify that
* the current configuration, particularly the passed in options pertaining
* to shared memory sizing, options work (or at least do not cause an error
* up to shared memory creation).
*/
void
BootstrapModeMain(int argc, char *argv[], bool check_only)
{
int i;
char *progname = argv[0];
int flag;
char *userDoption = NULL;
uint32 bootstrap_data_checksum_version = 0; /* No checksum */
Assert(!IsUnderPostmaster);
InitStandaloneProcess(argv[0]);
/* Set defaults, to be overridden by explicit options below */
InitializeGUCOptions();
/* an initial --boot or --check should be present */
Assert(argc > 1
&& (strcmp(argv[1], "--boot") == 0
|| strcmp(argv[1], "--check") == 0));
argv++;
argc--;
while ((flag = getopt(argc, argv, "B:c:d:D:Fkr:X:-:")) != -1)
{
switch (flag)
{
case 'B':
SetConfigOption("shared_buffers", optarg, PGC_POSTMASTER, PGC_S_ARGV);
break;
case 'c':
case '-':
{
char *name,
*value;
ParseLongOption(optarg, &name, &value);
if (!value)
{
if (flag == '-')
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("--%s requires a value",
optarg)));
else
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("-c %s requires a value",
optarg)));
}
SetConfigOption(name, value, PGC_POSTMASTER, PGC_S_ARGV);
pfree(name);
pfree(value);
break;
}
case 'D':
userDoption = pstrdup(optarg);
break;
case 'd':
{
/* Turn on debugging for the bootstrap process. */
char *debugstr;
debugstr = psprintf("debug%s", optarg);
SetConfigOption("log_min_messages", debugstr,
PGC_POSTMASTER, PGC_S_ARGV);
SetConfigOption("client_min_messages", debugstr,
PGC_POSTMASTER, PGC_S_ARGV);
pfree(debugstr);
}
break;
case 'F':
SetConfigOption("fsync", "false", PGC_POSTMASTER, PGC_S_ARGV);
break;
case 'k':
bootstrap_data_checksum_version = PG_DATA_CHECKSUM_VERSION;
break;
case 'r':
strlcpy(OutputFileName, optarg, MAXPGPATH);
break;
case 'X':
SetConfigOption("wal_segment_size", optarg, PGC_INTERNAL, PGC_S_DYNAMIC_DEFAULT);
break;
default:
write_stderr("Try \"%s --help\" for more information.\n",
progname);
proc_exit(1);
break;
}
}
if (argc != optind)
{
write_stderr("%s: invalid command-line arguments\n", progname);
proc_exit(1);
}
/* Acquire configuration parameters */
if (!SelectConfigFiles(userDoption, progname))
proc_exit(1);
/*
* Validate we have been given a reasonable-looking DataDir and change
* into it
*/
checkDataDir();
ChangeToDataDir();
CreateDataDirLockFile(false);
SetProcessingMode(BootstrapProcessing);
IgnoreSystemIndexes = true;
InitializeMaxBackends();
/*
* Even though bootstrapping runs in single-process mode, initialize
* postmaster child slots array so that --check can detect running out of
* shared memory or other resources if max_connections is set too high.
*/
InitPostmasterChildSlots();
InitializeFastPathLocks();
CreateSharedMemoryAndSemaphores();
/*
* XXX: It might make sense to move this into its own function at some
* point. Right now it seems like it'd cause more code duplication than
* it's worth.
*/
if (check_only)
{
SetProcessingMode(NormalProcessing);
CheckerModeMain();
abort();
}
/*
* Do backend-like initialization for bootstrap mode
*/
InitProcess();
BaseInit();
bootstrap_signals();
BootStrapXLOG(bootstrap_data_checksum_version);
/*
* To ensure that src/common/link-canary.c is linked into the backend, we
* must call it from somewhere. Here is as good as anywhere.
*/
if (pg_link_canary_is_frontend())
elog(ERROR, "backend is incorrectly linked to frontend functions");
InitPostgres(NULL, InvalidOid, NULL, InvalidOid, 0, NULL);
/* Initialize stuff for bootstrap-file processing */
for (i = 0; i < MAXATTR; i++)
{
attrtypes[i] = NULL;
Nulls[i] = false;
}
/*
* Process bootstrap input.
*/
StartTransactionCommand();
boot_yyparse();
CommitTransactionCommand();
/*
* We should now know about all mapped relations, so it's okay to write
* out the initial relation mapping files.
*/
RelationMapFinishBootstrap();
/* Clean up and exit */
cleanup();
proc_exit(0);
}
/* ----------------------------------------------------------------
* misc functions
* ----------------------------------------------------------------
*/
/*
* Set up signal handling for a bootstrap process
*/
static void
bootstrap_signals(void)
{
Assert(!IsUnderPostmaster);
/*
* We don't actually need any non-default signal handling in bootstrap
* mode; "curl up and die" is a sufficient response for all these cases.
* Let's set that handling explicitly, as documentation if nothing else.
*/
pqsignal(SIGHUP, SIG_DFL);
pqsignal(SIGINT, SIG_DFL);
pqsignal(SIGTERM, SIG_DFL);
pqsignal(SIGQUIT, SIG_DFL);
}
/* ----------------------------------------------------------------
* MANUAL BACKEND INTERACTIVE INTERFACE COMMANDS
* ----------------------------------------------------------------
*/
/* ----------------
* boot_openrel
*
* Execute BKI OPEN command.
* ----------------
*/
void
boot_openrel(char *relname)
{
int i;
if (strlen(relname) >= NAMEDATALEN)
relname[NAMEDATALEN - 1] = '\0';
/*
* pg_type must be filled before any OPEN command is executed, hence we
* can now populate Typ if we haven't yet.
*/
if (Typ == NIL)
populate_typ_list();
if (boot_reldesc != NULL)
closerel(NULL);
elog(DEBUG4, "open relation %s, attrsize %d",
relname, (int) ATTRIBUTE_FIXED_PART_SIZE);
boot_reldesc = table_openrv(makeRangeVar(NULL, relname, -1), NoLock);
numattr = RelationGetNumberOfAttributes(boot_reldesc);
for (i = 0; i < numattr; i++)
{
if (attrtypes[i] == NULL)
attrtypes[i] = AllocateAttribute();
memmove((char *) attrtypes[i],
(char *) TupleDescAttr(boot_reldesc->rd_att, i),
ATTRIBUTE_FIXED_PART_SIZE);
{
Form_pg_attribute at = attrtypes[i];
elog(DEBUG4, "create attribute %d name %s len %d num %d type %u",
i, NameStr(at->attname), at->attlen, at->attnum,
at->atttypid);
}
}
}
/* ----------------
* closerel
* ----------------
*/
void
closerel(char *relname)
{
if (relname)
{
if (boot_reldesc)
{
if (strcmp(RelationGetRelationName(boot_reldesc), relname) != 0)
elog(ERROR, "close of %s when %s was expected",
relname, RelationGetRelationName(boot_reldesc));
}
else
elog(ERROR, "close of %s before any relation was opened",
relname);
}
if (boot_reldesc == NULL)
elog(ERROR, "no open relation to close");
else
{
elog(DEBUG4, "close relation %s",
RelationGetRelationName(boot_reldesc));
table_close(boot_reldesc, NoLock);
boot_reldesc = NULL;
}
}
/* ----------------
* DEFINEATTR()
*
* define a <field,type> pair
* if there are n fields in a relation to be created, this routine
* will be called n times
* ----------------
*/
void
DefineAttr(char *name, char *type, int attnum, int nullness)
{
Oid typeoid;
if (boot_reldesc != NULL)
{
elog(WARNING, "no open relations allowed with CREATE command");
closerel(NULL);
}
if (attrtypes[attnum] == NULL)
attrtypes[attnum] = AllocateAttribute();
MemSet(attrtypes[attnum], 0, ATTRIBUTE_FIXED_PART_SIZE);
namestrcpy(&attrtypes[attnum]->attname, name);
elog(DEBUG4, "column %s %s", NameStr(attrtypes[attnum]->attname), type);
attrtypes[attnum]->attnum = attnum + 1;
typeoid = gettype(type);
if (Typ != NIL)
{
attrtypes[attnum]->atttypid = Ap->am_oid;
attrtypes[attnum]->attlen = Ap->am_typ.typlen;
attrtypes[attnum]->attbyval = Ap->am_typ.typbyval;
attrtypes[attnum]->attalign = Ap->am_typ.typalign;
attrtypes[attnum]->attstorage = Ap->am_typ.typstorage;
attrtypes[attnum]->attcompression = InvalidCompressionMethod;
attrtypes[attnum]->attcollation = Ap->am_typ.typcollation;
/* if an array type, assume 1-dimensional attribute */
if (Ap->am_typ.typelem != InvalidOid && Ap->am_typ.typlen < 0)
attrtypes[attnum]->attndims = 1;
else
attrtypes[attnum]->attndims = 0;
}
else
{
attrtypes[attnum]->atttypid = TypInfo[typeoid].oid;
attrtypes[attnum]->attlen = TypInfo[typeoid].len;
attrtypes[attnum]->attbyval = TypInfo[typeoid].byval;
attrtypes[attnum]->attalign = TypInfo[typeoid].align;
attrtypes[attnum]->attstorage = TypInfo[typeoid].storage;
attrtypes[attnum]->attcompression = InvalidCompressionMethod;
attrtypes[attnum]->attcollation = TypInfo[typeoid].collation;
/* if an array type, assume 1-dimensional attribute */
if (TypInfo[typeoid].elem != InvalidOid &&
attrtypes[attnum]->attlen < 0)
attrtypes[attnum]->attndims = 1;
else
attrtypes[attnum]->attndims = 0;
}
/*
* If a system catalog column is collation-aware, force it to use C
* collation, so that its behavior is independent of the database's
* collation. This is essential to allow template0 to be cloned with a
* different database collation.
*/
if (OidIsValid(attrtypes[attnum]->attcollation))
attrtypes[attnum]->attcollation = C_COLLATION_OID;
attrtypes[attnum]->attcacheoff = -1;
attrtypes[attnum]->atttypmod = -1;
attrtypes[attnum]->attislocal = true;
if (nullness == BOOTCOL_NULL_FORCE_NOT_NULL)
{
attrtypes[attnum]->attnotnull = true;
}
else if (nullness == BOOTCOL_NULL_FORCE_NULL)
{
attrtypes[attnum]->attnotnull = false;
}
else
{
Assert(nullness == BOOTCOL_NULL_AUTO);
/*
* Mark as "not null" if type is fixed-width and prior columns are
* likewise fixed-width and not-null. This corresponds to case where
* column can be accessed directly via C struct declaration.
*/
if (attrtypes[attnum]->attlen > 0)
{
int i;
/* check earlier attributes */
for (i = 0; i < attnum; i++)
{
if (attrtypes[i]->attlen <= 0 ||
!attrtypes[i]->attnotnull)
break;
}
if (i == attnum)
attrtypes[attnum]->attnotnull = true;
}
}
}
/* ----------------
* InsertOneTuple
*
* If objectid is not zero, it is a specific OID to assign to the tuple.
* Otherwise, an OID will be assigned (if necessary) by heap_insert.
* ----------------
*/
void
InsertOneTuple(void)
{
HeapTuple tuple;
TupleDesc tupDesc;
int i;
elog(DEBUG4, "inserting row with %d columns", numattr);
tupDesc = CreateTupleDesc(numattr, attrtypes);
tuple = heap_form_tuple(tupDesc, values, Nulls);
pfree(tupDesc); /* just free's tupDesc, not the attrtypes */
simple_heap_insert(boot_reldesc, tuple);
heap_freetuple(tuple);
elog(DEBUG4, "row inserted");
/*
* Reset null markers for next tuple
*/
for (i = 0; i < numattr; i++)
Nulls[i] = false;
}
/* ----------------
* InsertOneValue
* ----------------
*/
void
InsertOneValue(char *value, int i)
{
Oid typoid;
int16 typlen;
bool typbyval;
char typalign;
char typdelim;
Oid typioparam;
Oid typinput;
Oid typoutput;
Assert(i >= 0 && i < MAXATTR);
elog(DEBUG4, "inserting column %d value \"%s\"", i, value);
typoid = TupleDescAttr(boot_reldesc->rd_att, i)->atttypid;
boot_get_type_io_data(typoid,
&typlen, &typbyval, &typalign,
&typdelim, &typioparam,
&typinput, &typoutput);
values[i] = OidInputFunctionCall(typinput, value, typioparam, -1);
/*
* We use ereport not elog here so that parameters aren't evaluated unless
* the message is going to be printed, which generally it isn't
*/
ereport(DEBUG4,
(errmsg_internal("inserted -> %s",
OidOutputFunctionCall(typoutput, values[i]))));
}
/* ----------------
* InsertOneNull
* ----------------
*/
void
InsertOneNull(int i)
{
elog(DEBUG4, "inserting column %d NULL", i);
Assert(i >= 0 && i < MAXATTR);
if (TupleDescAttr(boot_reldesc->rd_att, i)->attnotnull)
elog(ERROR,
"NULL value specified for not-null column \"%s\" of relation \"%s\"",
NameStr(TupleDescAttr(boot_reldesc->rd_att, i)->attname),
RelationGetRelationName(boot_reldesc));
values[i] = PointerGetDatum(NULL);
Nulls[i] = true;
}
/* ----------------
* cleanup
* ----------------
*/
static void
cleanup(void)
{
if (boot_reldesc != NULL)
closerel(NULL);
}
/* ----------------
* populate_typ_list
*
* Load the Typ list by reading pg_type.
* ----------------
*/
static void
populate_typ_list(void)
{
Relation rel;
TableScanDesc scan;
HeapTuple tup;
MemoryContext old;
Assert(Typ == NIL);
rel = table_open(TypeRelationId, NoLock);
scan = table_beginscan_catalog(rel, 0, NULL);
old = MemoryContextSwitchTo(TopMemoryContext);
while ((tup = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
Form_pg_type typForm = (Form_pg_type) GETSTRUCT(tup);
struct typmap *newtyp;
newtyp = (struct typmap *) palloc(sizeof(struct typmap));
Typ = lappend(Typ, newtyp);
newtyp->am_oid = typForm->oid;
memcpy(&newtyp->am_typ, typForm, sizeof(newtyp->am_typ));
}
MemoryContextSwitchTo(old);
table_endscan(scan);
table_close(rel, NoLock);
}
/* ----------------
* gettype
*
* NB: this is really ugly; it will return an integer index into TypInfo[],
* and not an OID at all, until the first reference to a type not known in
* TypInfo[]. At that point it will read and cache pg_type in Typ,
* and subsequently return a real OID (and set the global pointer Ap to
* point at the found row in Typ). So caller must check whether Typ is
* still NIL to determine what the return value is!
* ----------------
*/
static Oid
gettype(char *type)
{
if (Typ != NIL)
{
ListCell *lc;
foreach(lc, Typ)
{
struct typmap *app = lfirst(lc);
if (strncmp(NameStr(app->am_typ.typname), type, NAMEDATALEN) == 0)
{
Ap = app;
return app->am_oid;
}
}
/*
* The type wasn't known; reload the pg_type contents and check again
* to handle composite types, added since last populating the list.
*/
list_free_deep(Typ);
Typ = NIL;
populate_typ_list();
/*
* Calling gettype would result in infinite recursion for types
* missing in pg_type, so just repeat the lookup.
*/
foreach(lc, Typ)
{
struct typmap *app = lfirst(lc);
if (strncmp(NameStr(app->am_typ.typname), type, NAMEDATALEN) == 0)
{
Ap = app;
return app->am_oid;
}
}
}
else
{
int i;
for (i = 0; i < n_types; i++)
{
if (strncmp(type, TypInfo[i].name, NAMEDATALEN) == 0)
return i;
}
/* Not in TypInfo, so we'd better be able to read pg_type now */
elog(DEBUG4, "external type: %s", type);
populate_typ_list();
return gettype(type);
}
elog(ERROR, "unrecognized type \"%s\"", type);
/* not reached, here to make compiler happy */
return 0;
}
/* ----------------
* boot_get_type_io_data
*
* Obtain type I/O information at bootstrap time. This intentionally has
* almost the same API as lsyscache.c's get_type_io_data, except that
* we only support obtaining the typinput and typoutput routines, not
* the binary I/O routines. It is exported so that array_in and array_out
* can be made to work during early bootstrap.
* ----------------
*/
void
boot_get_type_io_data(Oid typid,
int16 *typlen,
bool *typbyval,
char *typalign,
char *typdelim,
Oid *typioparam,
Oid *typinput,
Oid *typoutput)
{
if (Typ != NIL)
{
/* We have the boot-time contents of pg_type, so use it */
struct typmap *ap = NULL;
ListCell *lc;
foreach(lc, Typ)
{
ap = lfirst(lc);
if (ap->am_oid == typid)
break;
}
if (!ap || ap->am_oid != typid)
elog(ERROR, "type OID %u not found in Typ list", typid);
*typlen = ap->am_typ.typlen;
*typbyval = ap->am_typ.typbyval;
*typalign = ap->am_typ.typalign;
*typdelim = ap->am_typ.typdelim;
/* XXX this logic must match getTypeIOParam() */
if (OidIsValid(ap->am_typ.typelem))
*typioparam = ap->am_typ.typelem;
else
*typioparam = typid;
*typinput = ap->am_typ.typinput;
*typoutput = ap->am_typ.typoutput;
}
else
{
/* We don't have pg_type yet, so use the hard-wired TypInfo array */
int typeindex;
for (typeindex = 0; typeindex < n_types; typeindex++)
{
if (TypInfo[typeindex].oid == typid)
break;
}
if (typeindex >= n_types)
elog(ERROR, "type OID %u not found in TypInfo", typid);
*typlen = TypInfo[typeindex].len;
*typbyval = TypInfo[typeindex].byval;
*typalign = TypInfo[typeindex].align;
/* We assume typdelim is ',' for all boot-time types */
*typdelim = ',';
/* XXX this logic must match getTypeIOParam() */
if (OidIsValid(TypInfo[typeindex].elem))
*typioparam = TypInfo[typeindex].elem;
else
*typioparam = typid;
*typinput = TypInfo[typeindex].inproc;
*typoutput = TypInfo[typeindex].outproc;
}
}
/* ----------------
* AllocateAttribute
*
* Note: bootstrap never sets any per-column ACLs, so we only need
* ATTRIBUTE_FIXED_PART_SIZE space per attribute.
* ----------------
*/
static Form_pg_attribute
AllocateAttribute(void)
{
return (Form_pg_attribute)
MemoryContextAllocZero(TopMemoryContext, ATTRIBUTE_FIXED_PART_SIZE);
}
/*
* index_register() -- record an index that has been set up for building
* later.
*
* At bootstrap time, we define a bunch of indexes on system catalogs.
* We postpone actually building the indexes until just before we're
* finished with initialization, however. This is because the indexes
* themselves have catalog entries, and those have to be included in the
* indexes on those catalogs. Doing it in two phases is the simplest
* way of making sure the indexes have the right contents at the end.
*/
void
index_register(Oid heap,
Oid ind,
const IndexInfo *indexInfo)
{
IndexList *newind;
MemoryContext oldcxt;
/*
* XXX mao 10/31/92 -- don't gc index reldescs, associated info at
* bootstrap time. we'll declare the indexes now, but want to create them
* later.
*/
if (nogc == NULL)
nogc = AllocSetContextCreate(NULL,
"BootstrapNoGC",
ALLOCSET_DEFAULT_SIZES);
oldcxt = MemoryContextSwitchTo(nogc);
newind = (IndexList *) palloc(sizeof(IndexList));
newind->il_heap = heap;
newind->il_ind = ind;
newind->il_info = (IndexInfo *) palloc(sizeof(IndexInfo));
memcpy(newind->il_info, indexInfo, sizeof(IndexInfo));
/* expressions will likely be null, but may as well copy it */
newind->il_info->ii_Expressions =
copyObject(indexInfo->ii_Expressions);
newind->il_info->ii_ExpressionsState = NIL;
/* predicate will likely be null, but may as well copy it */
newind->il_info->ii_Predicate =
copyObject(indexInfo->ii_Predicate);
newind->il_info->ii_PredicateState = NULL;
/* no exclusion constraints at bootstrap time, so no need to copy */
Assert(indexInfo->ii_ExclusionOps == NULL);
Assert(indexInfo->ii_ExclusionProcs == NULL);
Assert(indexInfo->ii_ExclusionStrats == NULL);
newind->il_next = ILHead;
ILHead = newind;
MemoryContextSwitchTo(oldcxt);
}
/*
* build_indices -- fill in all the indexes registered earlier
*/
void
build_indices(void)
{
for (; ILHead != NULL; ILHead = ILHead->il_next)
{
Relation heap;
Relation ind;
/* need not bother with locks during bootstrap */
heap = table_open(ILHead->il_heap, NoLock);
ind = index_open(ILHead->il_ind, NoLock);
index_build(heap, ind, ILHead->il_info, false, false);
index_close(ind, NoLock);
table_close(heap, NoLock);
}
}