postgresql/src/backend/executor/nodeGroup.c
Tom Lane f6dba10e62 First phase of implementing hash-based grouping/aggregation. An AGG plan
node now does its own grouping of the input rows, and has no need for a
preceding GROUP node in the plan pipeline.  This allows elimination of
the misnamed tuplePerGroup option for GROUP, and actually saves more code
in nodeGroup.c than it costs in nodeAgg.c, as well as being presumably
faster.  Restructure the API of query_planner so that we do not commit to
using a sorted or unsorted plan in query_planner; instead grouping_planner
makes the decision.  (Right now it isn't any smarter than query_planner
was, but that will change as soon as it has the option to select a hash-
based aggregation step.)  Despite all the hackery, no initdb needed since
only in-memory node types changed.
2002-11-06 00:00:45 +00:00

367 lines
8.9 KiB
C

/*-------------------------------------------------------------------------
*
* nodeGroup.c
* Routines to handle group nodes (used for queries with GROUP BY clause).
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* DESCRIPTION
* The Group node is designed for handling queries with a GROUP BY clause.
* Its outer plan must deliver tuples that are sorted in the order
* specified by the grouping columns (ie. tuples from the same group are
* consecutive). That way, we just have to compare adjacent tuples to
* locate group boundaries.
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeGroup.c,v 1.48 2002/11/06 00:00:43 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/pg_operator.h"
#include "executor/executor.h"
#include "executor/nodeGroup.h"
#include "parser/parse_oper.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/*
* ExecGroup -
*
* Return one tuple for each group of matching input tuples.
*/
TupleTableSlot *
ExecGroup(Group *node)
{
GroupState *grpstate;
EState *estate;
ExprContext *econtext;
TupleDesc tupdesc;
HeapTuple outerTuple = NULL;
HeapTuple firsttuple;
TupleTableSlot *outerslot;
ProjectionInfo *projInfo;
TupleTableSlot *resultSlot;
/*
* get state info from node
*/
grpstate = node->grpstate;
if (grpstate->grp_done)
return NULL;
estate = node->plan.state;
econtext = node->grpstate->csstate.cstate.cs_ExprContext;
tupdesc = ExecGetScanType(&grpstate->csstate);
/*
* We need not call ResetExprContext here because execTuplesMatch will
* reset the per-tuple memory context once per input tuple.
*/
/* If we don't already have first tuple of group, fetch it */
/* this should occur on the first call only */
firsttuple = grpstate->grp_firstTuple;
if (firsttuple == NULL)
{
outerslot = ExecProcNode(outerPlan(node), (Plan *) node);
if (TupIsNull(outerslot))
{
grpstate->grp_done = TRUE;
return NULL;
}
grpstate->grp_firstTuple = firsttuple =
heap_copytuple(outerslot->val);
}
/*
* Scan over all tuples that belong to this group
*/
for (;;)
{
outerslot = ExecProcNode(outerPlan(node), (Plan *) node);
if (TupIsNull(outerslot))
{
grpstate->grp_done = TRUE;
outerTuple = NULL;
break;
}
outerTuple = outerslot->val;
/*
* Compare with first tuple and see if this tuple is of the same
* group.
*/
if (!execTuplesMatch(firsttuple, outerTuple,
tupdesc,
node->numCols, node->grpColIdx,
grpstate->eqfunctions,
econtext->ecxt_per_tuple_memory))
break;
}
/*
* form a projection tuple based on the (copied) first tuple of the
* group, and store it in the result tuple slot.
*/
ExecStoreTuple(firsttuple,
grpstate->csstate.css_ScanTupleSlot,
InvalidBuffer,
false);
econtext->ecxt_scantuple = grpstate->csstate.css_ScanTupleSlot;
projInfo = grpstate->csstate.cstate.cs_ProjInfo;
resultSlot = ExecProject(projInfo, NULL);
/* save first tuple of next group, if we are not done yet */
if (!grpstate->grp_done)
{
heap_freetuple(firsttuple);
grpstate->grp_firstTuple = heap_copytuple(outerTuple);
}
return resultSlot;
}
/* -----------------
* ExecInitGroup
*
* Creates the run-time information for the group node produced by the
* planner and initializes its outer subtree
* -----------------
*/
bool
ExecInitGroup(Group *node, EState *estate, Plan *parent)
{
GroupState *grpstate;
Plan *outerPlan;
/*
* assign the node's execution state
*/
node->plan.state = estate;
/*
* create state structure
*/
grpstate = makeNode(GroupState);
node->grpstate = grpstate;
grpstate->grp_useFirstTuple = FALSE;
grpstate->grp_done = FALSE;
grpstate->grp_firstTuple = NULL;
/*
* create expression context
*/
ExecAssignExprContext(estate, &grpstate->csstate.cstate);
#define GROUP_NSLOTS 2
/*
* tuple table initialization
*/
ExecInitScanTupleSlot(estate, &grpstate->csstate);
ExecInitResultTupleSlot(estate, &grpstate->csstate.cstate);
/*
* initializes child nodes
*/
outerPlan = outerPlan(node);
ExecInitNode(outerPlan, estate, (Plan *) node);
/*
* initialize tuple type.
*/
ExecAssignScanTypeFromOuterPlan((Plan *) node, &grpstate->csstate);
/*
* Initialize tuple type for both result and scan. This node does no
* projection
*/
ExecAssignResultTypeFromTL((Plan *) node, &grpstate->csstate.cstate);
ExecAssignProjectionInfo((Plan *) node, &grpstate->csstate.cstate);
/*
* Precompute fmgr lookup data for inner loop
*/
grpstate->eqfunctions =
execTuplesMatchPrepare(ExecGetScanType(&grpstate->csstate),
node->numCols,
node->grpColIdx);
return TRUE;
}
int
ExecCountSlotsGroup(Group *node)
{
return ExecCountSlotsNode(outerPlan(node)) + GROUP_NSLOTS;
}
/* ------------------------
* ExecEndGroup(node)
*
* -----------------------
*/
void
ExecEndGroup(Group *node)
{
GroupState *grpstate;
Plan *outerPlan;
grpstate = node->grpstate;
ExecFreeProjectionInfo(&grpstate->csstate.cstate);
ExecFreeExprContext(&grpstate->csstate.cstate);
outerPlan = outerPlan(node);
ExecEndNode(outerPlan, (Plan *) node);
/* clean up tuple table */
ExecClearTuple(grpstate->csstate.css_ScanTupleSlot);
if (grpstate->grp_firstTuple != NULL)
{
heap_freetuple(grpstate->grp_firstTuple);
grpstate->grp_firstTuple = NULL;
}
}
void
ExecReScanGroup(Group *node, ExprContext *exprCtxt, Plan *parent)
{
GroupState *grpstate = node->grpstate;
grpstate->grp_useFirstTuple = FALSE;
grpstate->grp_done = FALSE;
if (grpstate->grp_firstTuple != NULL)
{
heap_freetuple(grpstate->grp_firstTuple);
grpstate->grp_firstTuple = NULL;
}
if (((Plan *) node)->lefttree &&
((Plan *) node)->lefttree->chgParam == NULL)
ExecReScan(((Plan *) node)->lefttree, exprCtxt, (Plan *) node);
}
/*****************************************************************************
* Code shared with nodeUnique.c and nodeAgg.c
*****************************************************************************/
/*
* execTuplesMatch
* Return true if two tuples match in all the indicated fields.
* This is used to detect group boundaries in nodeGroup and nodeAgg,
* and to decide whether two tuples are distinct or not in nodeUnique.
*
* tuple1, tuple2: the tuples to compare
* tupdesc: tuple descriptor applying to both tuples
* numCols: the number of attributes to be examined
* matchColIdx: array of attribute column numbers
* eqFunctions: array of fmgr lookup info for the equality functions to use
* evalContext: short-term memory context for executing the functions
*
* NB: evalContext is reset each time!
*/
bool
execTuplesMatch(HeapTuple tuple1,
HeapTuple tuple2,
TupleDesc tupdesc,
int numCols,
AttrNumber *matchColIdx,
FmgrInfo *eqfunctions,
MemoryContext evalContext)
{
MemoryContext oldContext;
bool result;
int i;
/* Reset and switch into the temp context. */
MemoryContextReset(evalContext);
oldContext = MemoryContextSwitchTo(evalContext);
/*
* We cannot report a match without checking all the fields, but we
* can report a non-match as soon as we find unequal fields. So,
* start comparing at the last field (least significant sort key).
* That's the most likely to be different if we are dealing with
* sorted input.
*/
result = true;
for (i = numCols; --i >= 0;)
{
AttrNumber att = matchColIdx[i];
Datum attr1,
attr2;
bool isNull1,
isNull2;
attr1 = heap_getattr(tuple1,
att,
tupdesc,
&isNull1);
attr2 = heap_getattr(tuple2,
att,
tupdesc,
&isNull2);
if (isNull1 != isNull2)
{
result = false; /* one null and one not; they aren't equal */
break;
}
if (isNull1)
continue; /* both are null, treat as equal */
/* Apply the type-specific equality function */
if (!DatumGetBool(FunctionCall2(&eqfunctions[i],
attr1, attr2)))
{
result = false; /* they aren't equal */
break;
}
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* execTuplesMatchPrepare
* Look up the equality functions needed for execTuplesMatch.
* The result is a palloc'd array.
*/
FmgrInfo *
execTuplesMatchPrepare(TupleDesc tupdesc,
int numCols,
AttrNumber *matchColIdx)
{
FmgrInfo *eqfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
int i;
for (i = 0; i < numCols; i++)
{
AttrNumber att = matchColIdx[i];
Oid typid = tupdesc->attrs[att - 1]->atttypid;
Oid eq_function;
eq_function = compatible_oper_funcid(makeList1(makeString("=")),
typid, typid, true);
if (!OidIsValid(eq_function))
elog(ERROR, "Unable to identify an equality operator for type %s",
format_type_be(typid));
fmgr_info(eq_function, &eqfunctions[i]);
}
return eqfunctions;
}