mirror of
https://github.com/postgres/postgres.git
synced 2026-02-15 16:48:17 -05:00
The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us |
||
|---|---|---|
| .. | ||
| .gitignore | ||
| analyze.c | ||
| check_keywords.pl | ||
| gram.y | ||
| Makefile | ||
| parse_agg.c | ||
| parse_clause.c | ||
| parse_coerce.c | ||
| parse_collate.c | ||
| parse_cte.c | ||
| parse_enr.c | ||
| parse_expr.c | ||
| parse_func.c | ||
| parse_node.c | ||
| parse_oper.c | ||
| parse_param.c | ||
| parse_relation.c | ||
| parse_target.c | ||
| parse_type.c | ||
| parse_utilcmd.c | ||
| parser.c | ||
| README | ||
| scan.l | ||
| scansup.c | ||
src/backend/parser/README Parser ====== This directory does more than tokenize and parse SQL queries. It also creates Query structures for the various complex queries that are passed to the optimizer and then executor. parser.c things start here scan.l break query into tokens scansup.c handle escapes in input strings gram.y parse the tokens and produce a "raw" parse tree analyze.c top level of parse analysis for optimizable queries parse_agg.c handle aggregates, like SUM(col1), AVG(col2), ... parse_clause.c handle clauses like WHERE, ORDER BY, GROUP BY, ... parse_coerce.c handle coercing expressions to different data types parse_collate.c assign collation information in completed expressions parse_cte.c handle Common Table Expressions (WITH clauses) parse_expr.c handle expressions like col, col + 3, x = 3 or x = 4 parse_func.c handle functions, table.column and column identifiers parse_node.c create nodes for various structures parse_oper.c handle operators in expressions parse_param.c handle Params (for the cases used in the core backend) parse_relation.c support routines for tables and column handling parse_target.c handle the result list of the query parse_type.c support routines for data type handling parse_utilcmd.c parse analysis for utility commands (done at execution time) See also src/common/keywords.c, which contains the table of standard keywords and the keyword lookup function. We separated that out because various frontend code wants to use it too.