mirror of
https://github.com/redis/redis.git
synced 2026-02-03 20:39:54 -05:00
This PR adds a new section to the `INFO` command output, called `keysizes`. This section provides detailed statistics on the distribution of key sizes for each data type (strings, lists, sets, hashes and zsets) within the dataset. The distribution is tracked using a base-2 logarithmic histogram. # Motivation Currently, Redis lacks a built-in feature to track key sizes and item sizes per data type at a granular level. Understanding the distribution of key sizes is critical for monitoring memory usage and optimizing performance, particularly in large datasets. This enhancement will allow users to inspect the size distribution of keys directly from the `INFO` command, assisting with performance analysis and capacity planning. # Changes New Section in `INFO` Command: A new section called `keysizes` has been added to the `INFO` command output. This section reports a per-database, per-type histogram of key sizes. It provides insights into how many keys fall into specific size ranges (represented in powers of 2). **Example output:** ``` 127.0.0.1:6379> INFO keysizes # Keysizes db0_distrib_strings_sizes:1=19,2=655,512=100899,1K=31,2K=29,4K=23,8K=16,16K=3,32K=2 db0_distrib_lists_items:1=5784492,32=3558,64=1047,128=676,256=533,512=218,4K=1,8K=42 db0_distrib_sets_items:1=735564=50612,8=21462,64=1365,128=974,2K=292,4K=154,8K=89, db0_distrib_hashes_items:2=1,4=544,32=141169,64=207329,128=4349,256=136226,1K=1 ``` ## Future Use Cases: The key size distribution is collected per slot as well, laying the groundwork for future enhancements related to Redis Cluster.
1324 lines
48 KiB
C
1324 lines
48 KiB
C
/* Bit operations.
|
|
*
|
|
* Copyright (c) 2009-Present, Redis Ltd.
|
|
* All rights reserved.
|
|
*
|
|
* Licensed under your choice of the Redis Source Available License 2.0
|
|
* (RSALv2) or the Server Side Public License v1 (SSPLv1).
|
|
*/
|
|
|
|
#include "server.h"
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Helpers and low level bit functions.
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/* Count number of bits set in the binary array pointed by 's' and long
|
|
* 'count' bytes. The implementation of this function is required to
|
|
* work with an input string length up to 512 MB or more (server.proto_max_bulk_len) */
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
long long redisPopcount(void *s, long count) {
|
|
long long bits = 0;
|
|
unsigned char *p = s;
|
|
uint32_t *p4;
|
|
#if defined(HAVE_POPCNT)
|
|
int use_popcnt = __builtin_cpu_supports("popcnt"); /* Check if CPU supports POPCNT instruction. */
|
|
#else
|
|
int use_popcnt = 0; /* Assume CPU does not support POPCNT if
|
|
* __builtin_cpu_supports() is not available. */
|
|
#endif
|
|
static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};
|
|
|
|
/* Count initial bytes not aligned to 64-bit when using the POPCNT instruction,
|
|
* otherwise align to 32-bit. */
|
|
int align = use_popcnt ? 7 : 3;
|
|
while ((unsigned long)p & align && count) {
|
|
bits += bitsinbyte[*p++];
|
|
count--;
|
|
}
|
|
|
|
if (likely(use_popcnt)) {
|
|
/* Use separate counters to make the CPU think there are no
|
|
* dependencies between these popcnt operations. */
|
|
uint64_t cnt[4];
|
|
memset(cnt, 0, sizeof(cnt));
|
|
|
|
/* Count bits 32 bytes at a time by using popcnt.
|
|
* Unroll the loop to avoid the overhead of a single popcnt per iteration,
|
|
* allowing the CPU to extract more instruction-level parallelism.
|
|
* Reference: https://danluu.com/assembly-intrinsics/ */
|
|
while (count >= 32) {
|
|
cnt[0] += __builtin_popcountll(*(uint64_t*)(p));
|
|
cnt[1] += __builtin_popcountll(*(uint64_t*)(p + 8));
|
|
cnt[2] += __builtin_popcountll(*(uint64_t*)(p + 16));
|
|
cnt[3] += __builtin_popcountll(*(uint64_t*)(p + 24));
|
|
count -= 32;
|
|
p += 32;
|
|
}
|
|
bits += cnt[0] + cnt[1] + cnt[2] + cnt[3];
|
|
goto remain;
|
|
}
|
|
|
|
/* Count bits 28 bytes at a time */
|
|
p4 = (uint32_t*)p;
|
|
while(count>=28) {
|
|
uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
|
|
|
|
aux1 = *p4++;
|
|
aux2 = *p4++;
|
|
aux3 = *p4++;
|
|
aux4 = *p4++;
|
|
aux5 = *p4++;
|
|
aux6 = *p4++;
|
|
aux7 = *p4++;
|
|
count -= 28;
|
|
|
|
aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
|
|
aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
|
|
aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
|
|
aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
|
|
aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
|
|
aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
|
|
aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
|
|
aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
|
|
aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
|
|
aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
|
|
aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
|
|
aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
|
|
aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
|
|
aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
|
|
bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
|
|
((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
|
|
((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
|
|
((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
|
|
((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
|
|
((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
|
|
((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
|
|
}
|
|
p = (unsigned char*)p4;
|
|
|
|
remain:
|
|
/* Count the remaining bytes. */
|
|
while(count--) bits += bitsinbyte[*p++];
|
|
return bits;
|
|
}
|
|
|
|
/* Return the position of the first bit set to one (if 'bit' is 1) or
|
|
* zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
|
|
*
|
|
* The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
|
|
* no zero bit is found, it returns count*8 assuming the string is zero
|
|
* padded on the right. However if 'bit' is 1 it is possible that there is
|
|
* not a single set bit in the bitmap. In this special case -1 is returned. */
|
|
long long redisBitpos(void *s, unsigned long count, int bit) {
|
|
unsigned long *l;
|
|
unsigned char *c;
|
|
unsigned long skipval, word = 0, one;
|
|
long long pos = 0; /* Position of bit, to return to the caller. */
|
|
unsigned long j;
|
|
int found;
|
|
|
|
/* Process whole words first, seeking for first word that is not
|
|
* all ones or all zeros respectively if we are looking for zeros
|
|
* or ones. This is much faster with large strings having contiguous
|
|
* blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
|
|
*
|
|
* Note that if we start from an address that is not aligned
|
|
* to sizeof(unsigned long) we consume it byte by byte until it is
|
|
* aligned. */
|
|
|
|
/* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
|
|
skipval = bit ? 0 : UCHAR_MAX;
|
|
c = (unsigned char*) s;
|
|
found = 0;
|
|
while((unsigned long)c & (sizeof(*l)-1) && count) {
|
|
if (*c != skipval) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
c++;
|
|
count--;
|
|
pos += 8;
|
|
}
|
|
|
|
/* Skip bits with full word step. */
|
|
l = (unsigned long*) c;
|
|
if (!found) {
|
|
skipval = bit ? 0 : ULONG_MAX;
|
|
while (count >= sizeof(*l)) {
|
|
if (*l != skipval) break;
|
|
l++;
|
|
count -= sizeof(*l);
|
|
pos += sizeof(*l)*8;
|
|
}
|
|
}
|
|
|
|
/* Load bytes into "word" considering the first byte as the most significant
|
|
* (we basically consider it as written in big endian, since we consider the
|
|
* string as a set of bits from left to right, with the first bit at position
|
|
* zero.
|
|
*
|
|
* Note that the loading is designed to work even when the bytes left
|
|
* (count) are less than a full word. We pad it with zero on the right. */
|
|
c = (unsigned char*)l;
|
|
for (j = 0; j < sizeof(*l); j++) {
|
|
word <<= 8;
|
|
if (count) {
|
|
word |= *c;
|
|
c++;
|
|
count--;
|
|
}
|
|
}
|
|
|
|
/* Special case:
|
|
* If bits in the string are all zero and we are looking for one,
|
|
* return -1 to signal that there is not a single "1" in the whole
|
|
* string. This can't happen when we are looking for "0" as we assume
|
|
* that the right of the string is zero padded. */
|
|
if (bit == 1 && word == 0) return -1;
|
|
|
|
/* Last word left, scan bit by bit. The first thing we need is to
|
|
* have a single "1" set in the most significant position in an
|
|
* unsigned long. We don't know the size of the long so we use a
|
|
* simple trick. */
|
|
one = ULONG_MAX; /* All bits set to 1.*/
|
|
one >>= 1; /* All bits set to 1 but the MSB. */
|
|
one = ~one; /* All bits set to 0 but the MSB. */
|
|
|
|
while(one) {
|
|
if (((one & word) != 0) == bit) return pos;
|
|
pos++;
|
|
one >>= 1;
|
|
}
|
|
|
|
/* If we reached this point, there is a bug in the algorithm, since
|
|
* the case of no match is handled as a special case before. */
|
|
serverPanic("End of redisBitpos() reached.");
|
|
return 0; /* Just to avoid warnings. */
|
|
}
|
|
|
|
/* The following set.*Bitfield and get.*Bitfield functions implement setting
|
|
* and getting arbitrary size (up to 64 bits) signed and unsigned integers
|
|
* at arbitrary positions into a bitmap.
|
|
*
|
|
* The representation considers the bitmap as having the bit number 0 to be
|
|
* the most significant bit of the first byte, and so forth, so for example
|
|
* setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
|
|
* previously set to all zeroes, will produce the following representation:
|
|
*
|
|
* +--------+--------+
|
|
* |00000001|01110000|
|
|
* +--------+--------+
|
|
*
|
|
* When offsets and integer sizes are aligned to bytes boundaries, this is the
|
|
* same as big endian, however when such alignment does not exist, its important
|
|
* to also understand how the bits inside a byte are ordered.
|
|
*
|
|
* Note that this format follows the same convention as SETBIT and related
|
|
* commands.
|
|
*/
|
|
|
|
void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
|
|
uint64_t byte, bit, byteval, bitval, j;
|
|
|
|
for (j = 0; j < bits; j++) {
|
|
bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;
|
|
byte = offset >> 3;
|
|
bit = 7 - (offset & 0x7);
|
|
byteval = p[byte];
|
|
byteval &= ~(1 << bit);
|
|
byteval |= bitval << bit;
|
|
p[byte] = byteval & 0xff;
|
|
offset++;
|
|
}
|
|
}
|
|
|
|
void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
|
|
uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */
|
|
setUnsignedBitfield(p,offset,bits,uv);
|
|
}
|
|
|
|
uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
|
|
uint64_t byte, bit, byteval, bitval, j, value = 0;
|
|
|
|
for (j = 0; j < bits; j++) {
|
|
byte = offset >> 3;
|
|
bit = 7 - (offset & 0x7);
|
|
byteval = p[byte];
|
|
bitval = (byteval >> bit) & 1;
|
|
value = (value<<1) | bitval;
|
|
offset++;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
|
|
int64_t value;
|
|
union {uint64_t u; int64_t i;} conv;
|
|
|
|
/* Converting from unsigned to signed is undefined when the value does
|
|
* not fit, however here we assume two's complement and the original value
|
|
* was obtained from signed -> unsigned conversion, so we'll find the
|
|
* most significant bit set if the original value was negative.
|
|
*
|
|
* Note that two's complement is mandatory for exact-width types
|
|
* according to the C99 standard. */
|
|
conv.u = getUnsignedBitfield(p,offset,bits);
|
|
value = conv.i;
|
|
|
|
/* If the top significant bit is 1, propagate it to all the
|
|
* higher bits for two's complement representation of signed
|
|
* integers. */
|
|
if (bits < 64 && (value & ((uint64_t)1 << (bits-1))))
|
|
value |= ((uint64_t)-1) << bits;
|
|
return value;
|
|
}
|
|
|
|
/* The following two functions detect overflow of a value in the context
|
|
* of storing it as an unsigned or signed integer with the specified
|
|
* number of bits. The functions both take the value and a possible increment.
|
|
* If no overflow could happen and the value+increment fit inside the limits,
|
|
* then zero is returned, otherwise in case of overflow, 1 is returned,
|
|
* otherwise in case of underflow, -1 is returned.
|
|
*
|
|
* When non-zero is returned (overflow or underflow), if not NULL, *limit is
|
|
* set to the value the operation should result when an overflow happens,
|
|
* depending on the specified overflow semantics:
|
|
*
|
|
* For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
|
|
* you can store in that integer. when -1 is returned, *limit is set to the
|
|
* minimum value that an integer of that size can represent.
|
|
*
|
|
* For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
|
|
* "wrap" around towards zero for unsigned integers, or towards the most
|
|
* negative number that is possible to represent for signed integers. */
|
|
|
|
#define BFOVERFLOW_WRAP 0
|
|
#define BFOVERFLOW_SAT 1
|
|
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */
|
|
|
|
int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
|
|
uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);
|
|
int64_t maxincr = max-value;
|
|
int64_t minincr = -value;
|
|
|
|
if (value > max || (incr > 0 && incr > maxincr)) {
|
|
if (limit) {
|
|
if (owtype == BFOVERFLOW_WRAP) {
|
|
goto handle_wrap;
|
|
} else if (owtype == BFOVERFLOW_SAT) {
|
|
*limit = max;
|
|
}
|
|
}
|
|
return 1;
|
|
} else if (incr < 0 && incr < minincr) {
|
|
if (limit) {
|
|
if (owtype == BFOVERFLOW_WRAP) {
|
|
goto handle_wrap;
|
|
} else if (owtype == BFOVERFLOW_SAT) {
|
|
*limit = 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
handle_wrap:
|
|
{
|
|
uint64_t mask = ((uint64_t)-1) << bits;
|
|
uint64_t res = value+incr;
|
|
|
|
res &= ~mask;
|
|
*limit = res;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
|
|
int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);
|
|
int64_t min = (-max)-1;
|
|
|
|
/* Note that maxincr and minincr could overflow, but we use the values
|
|
* only after checking 'value' range, so when we use it no overflow
|
|
* happens. 'uint64_t' cast is there just to prevent undefined behavior on
|
|
* overflow */
|
|
int64_t maxincr = (uint64_t)max-value;
|
|
int64_t minincr = min-value;
|
|
|
|
if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr))
|
|
{
|
|
if (limit) {
|
|
if (owtype == BFOVERFLOW_WRAP) {
|
|
goto handle_wrap;
|
|
} else if (owtype == BFOVERFLOW_SAT) {
|
|
*limit = max;
|
|
}
|
|
}
|
|
return 1;
|
|
} else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {
|
|
if (limit) {
|
|
if (owtype == BFOVERFLOW_WRAP) {
|
|
goto handle_wrap;
|
|
} else if (owtype == BFOVERFLOW_SAT) {
|
|
*limit = min;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
handle_wrap:
|
|
{
|
|
uint64_t msb = (uint64_t)1 << (bits-1);
|
|
uint64_t a = value, b = incr, c;
|
|
c = a+b; /* Perform addition as unsigned so that's defined. */
|
|
|
|
/* If the sign bit is set, propagate to all the higher order
|
|
* bits, to cap the negative value. If it's clear, mask to
|
|
* the positive integer limit. */
|
|
if (bits < 64) {
|
|
uint64_t mask = ((uint64_t)-1) << bits;
|
|
if (c & msb) {
|
|
c |= mask;
|
|
} else {
|
|
c &= ~mask;
|
|
}
|
|
}
|
|
*limit = c;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Debugging function. Just show bits in the specified bitmap. Not used
|
|
* but here for not having to rewrite it when debugging is needed. */
|
|
void printBits(unsigned char *p, unsigned long count) {
|
|
unsigned long j, i, byte;
|
|
|
|
for (j = 0; j < count; j++) {
|
|
byte = p[j];
|
|
for (i = 0x80; i > 0; i /= 2)
|
|
printf("%c", (byte & i) ? '1' : '0');
|
|
printf("|");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
#define BITOP_AND 0
|
|
#define BITOP_OR 1
|
|
#define BITOP_XOR 2
|
|
#define BITOP_NOT 3
|
|
|
|
#define BITFIELDOP_GET 0
|
|
#define BITFIELDOP_SET 1
|
|
#define BITFIELDOP_INCRBY 2
|
|
|
|
/* This helper function used by GETBIT / SETBIT parses the bit offset argument
|
|
* making sure an error is returned if it is negative or if it overflows
|
|
* Redis 512 MB limit for the string value or more (server.proto_max_bulk_len).
|
|
*
|
|
* If the 'hash' argument is true, and 'bits is positive, then the command
|
|
* will also parse bit offsets prefixed by "#". In such a case the offset
|
|
* is multiplied by 'bits'. This is useful for the BITFIELD command. */
|
|
int getBitOffsetFromArgument(client *c, robj *o, uint64_t *offset, int hash, int bits) {
|
|
long long loffset;
|
|
char *err = "bit offset is not an integer or out of range";
|
|
char *p = o->ptr;
|
|
size_t plen = sdslen(p);
|
|
int usehash = 0;
|
|
|
|
/* Handle #<offset> form. */
|
|
if (p[0] == '#' && hash && bits > 0) usehash = 1;
|
|
|
|
if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
|
|
addReplyError(c,err);
|
|
return C_ERR;
|
|
}
|
|
|
|
/* Adjust the offset by 'bits' for #<offset> form. */
|
|
if (usehash) loffset *= bits;
|
|
|
|
/* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */
|
|
if (loffset < 0 || (!mustObeyClient(c) && (loffset >> 3) >= server.proto_max_bulk_len))
|
|
{
|
|
addReplyError(c,err);
|
|
return C_ERR;
|
|
}
|
|
|
|
*offset = loffset;
|
|
return C_OK;
|
|
}
|
|
|
|
/* This helper function for BITFIELD parses a bitfield type in the form
|
|
* <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
|
|
* the bits is a value between 1 and 64. However 64 bits unsigned integers
|
|
* are reported as an error because of current limitations of Redis protocol
|
|
* to return unsigned integer values greater than INT64_MAX.
|
|
*
|
|
* On error C_ERR is returned and an error is sent to the client. */
|
|
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
|
|
char *p = o->ptr;
|
|
char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
|
|
long long llbits;
|
|
|
|
if (p[0] == 'i') {
|
|
*sign = 1;
|
|
} else if (p[0] == 'u') {
|
|
*sign = 0;
|
|
} else {
|
|
addReplyError(c,err);
|
|
return C_ERR;
|
|
}
|
|
|
|
if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
|
|
llbits < 1 ||
|
|
(*sign == 1 && llbits > 64) ||
|
|
(*sign == 0 && llbits > 63))
|
|
{
|
|
addReplyError(c,err);
|
|
return C_ERR;
|
|
}
|
|
*bits = llbits;
|
|
return C_OK;
|
|
}
|
|
|
|
/* This is a helper function for commands implementations that need to write
|
|
* bits to a string object. The command creates or pad with zeroes the string
|
|
* so that the 'maxbit' bit can be addressed. The object is finally
|
|
* returned. Otherwise if the key holds a wrong type NULL is returned and
|
|
* an error is sent to the client.
|
|
*
|
|
* (Must provide all the arguments to the function)
|
|
*/
|
|
static robj *lookupStringForBitCommand(client *c, uint64_t maxbit,
|
|
size_t *strOldSize, size_t *strGrowSize)
|
|
{
|
|
size_t byte = maxbit >> 3;
|
|
robj *o = lookupKeyWrite(c->db,c->argv[1]);
|
|
if (checkType(c,o,OBJ_STRING)) return NULL;
|
|
|
|
if (o == NULL) {
|
|
o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
|
|
dbAdd(c->db,c->argv[1],o);
|
|
*strGrowSize = byte + 1;
|
|
*strOldSize = 0;
|
|
} else {
|
|
o = dbUnshareStringValue(c->db,c->argv[1],o);
|
|
*strOldSize = sdslen(o->ptr);
|
|
o->ptr = sdsgrowzero(o->ptr,byte+1);
|
|
*strGrowSize = sdslen(o->ptr) - *strOldSize;
|
|
}
|
|
return o;
|
|
}
|
|
|
|
/* Return a pointer to the string object content, and stores its length
|
|
* in 'len'. The user is required to pass (likely stack allocated) buffer
|
|
* 'llbuf' of at least LONG_STR_SIZE bytes. Such a buffer is used in the case
|
|
* the object is integer encoded in order to provide the representation
|
|
* without using heap allocation.
|
|
*
|
|
* The function returns the pointer to the object array of bytes representing
|
|
* the string it contains, that may be a pointer to 'llbuf' or to the
|
|
* internal object representation. As a side effect 'len' is filled with
|
|
* the length of such buffer.
|
|
*
|
|
* If the source object is NULL the function is guaranteed to return NULL
|
|
* and set 'len' to 0. */
|
|
unsigned char *getObjectReadOnlyString(robj *o, long *len, char *llbuf) {
|
|
serverAssert(!o || o->type == OBJ_STRING);
|
|
unsigned char *p = NULL;
|
|
|
|
/* Set the 'p' pointer to the string, that can be just a stack allocated
|
|
* array if our string was integer encoded. */
|
|
if (o && o->encoding == OBJ_ENCODING_INT) {
|
|
p = (unsigned char*) llbuf;
|
|
if (len) *len = ll2string(llbuf,LONG_STR_SIZE,(long)o->ptr);
|
|
} else if (o) {
|
|
p = (unsigned char*) o->ptr;
|
|
if (len) *len = sdslen(o->ptr);
|
|
} else {
|
|
if (len) *len = 0;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* SETBIT key offset bitvalue */
|
|
void setbitCommand(client *c) {
|
|
robj *o;
|
|
char *err = "bit is not an integer or out of range";
|
|
uint64_t bitoffset;
|
|
ssize_t byte, bit;
|
|
int byteval, bitval;
|
|
long on;
|
|
|
|
if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
|
|
return;
|
|
|
|
if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
|
|
return;
|
|
|
|
/* Bits can only be set or cleared... */
|
|
if (on & ~1) {
|
|
addReplyError(c,err);
|
|
return;
|
|
}
|
|
|
|
size_t strOldSize, strGrowSize;
|
|
if ((o = lookupStringForBitCommand(c,bitoffset,&strOldSize,&strGrowSize)) == NULL)
|
|
return;
|
|
|
|
/* Get current values */
|
|
byte = bitoffset >> 3;
|
|
byteval = ((uint8_t*)o->ptr)[byte];
|
|
bit = 7 - (bitoffset & 0x7);
|
|
bitval = byteval & (1 << bit);
|
|
|
|
/* Either it is newly created, changed length, or the bit changes before and after.
|
|
* Note that the bitval here is actually a decimal number.
|
|
* So we need to use `!!` to convert it to 0 or 1 for comparison. */
|
|
if (strGrowSize || (!!bitval != on)) {
|
|
/* Update byte with new bit value. */
|
|
byteval &= ~(1 << bit);
|
|
byteval |= ((on & 0x1) << bit);
|
|
((uint8_t*)o->ptr)[byte] = byteval;
|
|
signalModifiedKey(c,c->db,c->argv[1]);
|
|
notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
|
|
server.dirty++;
|
|
|
|
/* If this is not a new key (old size not 0) and size changed, then
|
|
* update the keysizes histogram. Otherwise, the histogram already
|
|
* updated in lookupStringForBitCommand() by calling dbAdd(). */
|
|
if ((strOldSize > 0) && (strGrowSize != 0))
|
|
updateKeysizesHist(c->db, getKeySlot(c->argv[1]->ptr), OBJ_STRING,
|
|
strOldSize, strOldSize + strGrowSize);
|
|
}
|
|
|
|
/* Return original value. */
|
|
addReply(c, bitval ? shared.cone : shared.czero);
|
|
}
|
|
|
|
/* GETBIT key offset */
|
|
void getbitCommand(client *c) {
|
|
robj *o;
|
|
char llbuf[32];
|
|
uint64_t bitoffset;
|
|
size_t byte, bit;
|
|
size_t bitval = 0;
|
|
|
|
if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
|
|
return;
|
|
|
|
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
|
|
checkType(c,o,OBJ_STRING)) return;
|
|
|
|
byte = bitoffset >> 3;
|
|
bit = 7 - (bitoffset & 0x7);
|
|
if (sdsEncodedObject(o)) {
|
|
if (byte < sdslen(o->ptr))
|
|
bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
|
|
} else {
|
|
if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
|
|
bitval = llbuf[byte] & (1 << bit);
|
|
}
|
|
|
|
addReply(c, bitval ? shared.cone : shared.czero);
|
|
}
|
|
|
|
/* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
|
|
REDIS_NO_SANITIZE("alignment")
|
|
void bitopCommand(client *c) {
|
|
char *opname = c->argv[1]->ptr;
|
|
robj *o, *targetkey = c->argv[2];
|
|
unsigned long op, j, numkeys;
|
|
robj **objects; /* Array of source objects. */
|
|
unsigned char **src; /* Array of source strings pointers. */
|
|
unsigned long *len, maxlen = 0; /* Array of length of src strings,
|
|
and max len. */
|
|
unsigned long minlen = 0; /* Min len among the input keys. */
|
|
unsigned char *res = NULL; /* Resulting string. */
|
|
|
|
/* Parse the operation name. */
|
|
if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
|
|
op = BITOP_AND;
|
|
else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
|
|
op = BITOP_OR;
|
|
else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
|
|
op = BITOP_XOR;
|
|
else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
|
|
op = BITOP_NOT;
|
|
else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Sanity check: NOT accepts only a single key argument. */
|
|
if (op == BITOP_NOT && c->argc != 4) {
|
|
addReplyError(c,"BITOP NOT must be called with a single source key.");
|
|
return;
|
|
}
|
|
|
|
/* Lookup keys, and store pointers to the string objects into an array. */
|
|
numkeys = c->argc - 3;
|
|
src = zmalloc(sizeof(unsigned char*) * numkeys);
|
|
len = zmalloc(sizeof(long) * numkeys);
|
|
objects = zmalloc(sizeof(robj*) * numkeys);
|
|
for (j = 0; j < numkeys; j++) {
|
|
o = lookupKeyRead(c->db,c->argv[j+3]);
|
|
/* Handle non-existing keys as empty strings. */
|
|
if (o == NULL) {
|
|
objects[j] = NULL;
|
|
src[j] = NULL;
|
|
len[j] = 0;
|
|
minlen = 0;
|
|
continue;
|
|
}
|
|
/* Return an error if one of the keys is not a string. */
|
|
if (checkType(c,o,OBJ_STRING)) {
|
|
unsigned long i;
|
|
for (i = 0; i < j; i++) {
|
|
if (objects[i])
|
|
decrRefCount(objects[i]);
|
|
}
|
|
zfree(src);
|
|
zfree(len);
|
|
zfree(objects);
|
|
return;
|
|
}
|
|
objects[j] = getDecodedObject(o);
|
|
src[j] = objects[j]->ptr;
|
|
len[j] = sdslen(objects[j]->ptr);
|
|
if (len[j] > maxlen) maxlen = len[j];
|
|
if (j == 0 || len[j] < minlen) minlen = len[j];
|
|
}
|
|
|
|
/* Compute the bit operation, if at least one string is not empty. */
|
|
if (maxlen) {
|
|
res = (unsigned char*) sdsnewlen(NULL,maxlen);
|
|
unsigned char output, byte;
|
|
unsigned long i;
|
|
|
|
/* Fast path: as far as we have data for all the input bitmaps we
|
|
* can take a fast path that performs much better than the
|
|
* vanilla algorithm. On ARM we skip the fast path since it will
|
|
* result in GCC compiling the code using multiple-words load/store
|
|
* operations that are not supported even in ARM >= v6. */
|
|
j = 0;
|
|
#ifndef USE_ALIGNED_ACCESS
|
|
if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
|
|
unsigned long *lp[16];
|
|
unsigned long *lres = (unsigned long*) res;
|
|
|
|
memcpy(lp,src,sizeof(unsigned long*)*numkeys);
|
|
memcpy(res,src[0],minlen);
|
|
|
|
/* Different branches per different operations for speed (sorry). */
|
|
if (op == BITOP_AND) {
|
|
while(minlen >= sizeof(unsigned long)*4) {
|
|
for (i = 1; i < numkeys; i++) {
|
|
lres[0] &= lp[i][0];
|
|
lres[1] &= lp[i][1];
|
|
lres[2] &= lp[i][2];
|
|
lres[3] &= lp[i][3];
|
|
lp[i]+=4;
|
|
}
|
|
lres+=4;
|
|
j += sizeof(unsigned long)*4;
|
|
minlen -= sizeof(unsigned long)*4;
|
|
}
|
|
} else if (op == BITOP_OR) {
|
|
while(minlen >= sizeof(unsigned long)*4) {
|
|
for (i = 1; i < numkeys; i++) {
|
|
lres[0] |= lp[i][0];
|
|
lres[1] |= lp[i][1];
|
|
lres[2] |= lp[i][2];
|
|
lres[3] |= lp[i][3];
|
|
lp[i]+=4;
|
|
}
|
|
lres+=4;
|
|
j += sizeof(unsigned long)*4;
|
|
minlen -= sizeof(unsigned long)*4;
|
|
}
|
|
} else if (op == BITOP_XOR) {
|
|
while(minlen >= sizeof(unsigned long)*4) {
|
|
for (i = 1; i < numkeys; i++) {
|
|
lres[0] ^= lp[i][0];
|
|
lres[1] ^= lp[i][1];
|
|
lres[2] ^= lp[i][2];
|
|
lres[3] ^= lp[i][3];
|
|
lp[i]+=4;
|
|
}
|
|
lres+=4;
|
|
j += sizeof(unsigned long)*4;
|
|
minlen -= sizeof(unsigned long)*4;
|
|
}
|
|
} else if (op == BITOP_NOT) {
|
|
while(minlen >= sizeof(unsigned long)*4) {
|
|
lres[0] = ~lres[0];
|
|
lres[1] = ~lres[1];
|
|
lres[2] = ~lres[2];
|
|
lres[3] = ~lres[3];
|
|
lres+=4;
|
|
j += sizeof(unsigned long)*4;
|
|
minlen -= sizeof(unsigned long)*4;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* j is set to the next byte to process by the previous loop. */
|
|
for (; j < maxlen; j++) {
|
|
output = (len[0] <= j) ? 0 : src[0][j];
|
|
if (op == BITOP_NOT) output = ~output;
|
|
for (i = 1; i < numkeys; i++) {
|
|
int skip = 0;
|
|
byte = (len[i] <= j) ? 0 : src[i][j];
|
|
switch(op) {
|
|
case BITOP_AND:
|
|
output &= byte;
|
|
skip = (output == 0);
|
|
break;
|
|
case BITOP_OR:
|
|
output |= byte;
|
|
skip = (output == 0xff);
|
|
break;
|
|
case BITOP_XOR: output ^= byte; break;
|
|
}
|
|
|
|
if (skip) {
|
|
break;
|
|
}
|
|
}
|
|
res[j] = output;
|
|
}
|
|
}
|
|
for (j = 0; j < numkeys; j++) {
|
|
if (objects[j])
|
|
decrRefCount(objects[j]);
|
|
}
|
|
zfree(src);
|
|
zfree(len);
|
|
zfree(objects);
|
|
|
|
/* Store the computed value into the target key */
|
|
if (maxlen) {
|
|
o = createObject(OBJ_STRING,res);
|
|
setKey(c,c->db,targetkey,o,0);
|
|
notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id);
|
|
decrRefCount(o);
|
|
server.dirty++;
|
|
} else if (dbDelete(c->db,targetkey)) {
|
|
signalModifiedKey(c,c->db,targetkey);
|
|
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id);
|
|
server.dirty++;
|
|
}
|
|
addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
|
|
}
|
|
|
|
/* BITCOUNT key [start end [BIT|BYTE]] */
|
|
void bitcountCommand(client *c) {
|
|
robj *o;
|
|
long long start, end;
|
|
long strlen;
|
|
unsigned char *p;
|
|
char llbuf[LONG_STR_SIZE];
|
|
int isbit = 0;
|
|
unsigned char first_byte_neg_mask = 0, last_byte_neg_mask = 0;
|
|
|
|
/* Parse start/end range if any. */
|
|
if (c->argc == 4 || c->argc == 5) {
|
|
if (getLongLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK)
|
|
return;
|
|
if (getLongLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)
|
|
return;
|
|
if (c->argc == 5) {
|
|
if (!strcasecmp(c->argv[4]->ptr,"bit")) isbit = 1;
|
|
else if (!strcasecmp(c->argv[4]->ptr,"byte")) isbit = 0;
|
|
else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
/* Lookup, check for type. */
|
|
o = lookupKeyRead(c->db, c->argv[1]);
|
|
if (checkType(c, o, OBJ_STRING)) return;
|
|
p = getObjectReadOnlyString(o,&strlen,llbuf);
|
|
long long totlen = strlen;
|
|
|
|
/* Make sure we will not overflow */
|
|
serverAssert(totlen <= LLONG_MAX >> 3);
|
|
|
|
/* Convert negative indexes */
|
|
if (start < 0 && end < 0 && start > end) {
|
|
addReply(c,shared.czero);
|
|
return;
|
|
}
|
|
if (isbit) totlen <<= 3;
|
|
if (start < 0) start = totlen+start;
|
|
if (end < 0) end = totlen+end;
|
|
if (start < 0) start = 0;
|
|
if (end < 0) end = 0;
|
|
if (end >= totlen) end = totlen-1;
|
|
if (isbit && start <= end) {
|
|
/* Before converting bit offset to byte offset, create negative masks
|
|
* for the edges. */
|
|
first_byte_neg_mask = ~((1<<(8-(start&7)))-1) & 0xFF;
|
|
last_byte_neg_mask = (1<<(7-(end&7)))-1;
|
|
start >>= 3;
|
|
end >>= 3;
|
|
}
|
|
} else if (c->argc == 2) {
|
|
/* Lookup, check for type. */
|
|
o = lookupKeyRead(c->db, c->argv[1]);
|
|
if (checkType(c, o, OBJ_STRING)) return;
|
|
p = getObjectReadOnlyString(o,&strlen,llbuf);
|
|
/* The whole string. */
|
|
start = 0;
|
|
end = strlen-1;
|
|
} else {
|
|
/* Syntax error. */
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* Return 0 for non existing keys. */
|
|
if (o == NULL) {
|
|
addReply(c, shared.czero);
|
|
return;
|
|
}
|
|
|
|
/* Precondition: end >= 0 && end < strlen, so the only condition where
|
|
* zero can be returned is: start > end. */
|
|
if (start > end) {
|
|
addReply(c,shared.czero);
|
|
} else {
|
|
long bytes = (long)(end-start+1);
|
|
long long count = redisPopcount(p+start,bytes);
|
|
if (first_byte_neg_mask != 0 || last_byte_neg_mask != 0) {
|
|
unsigned char firstlast[2] = {0, 0};
|
|
/* We may count bits of first byte and last byte which are out of
|
|
* range. So we need to subtract them. Here we use a trick. We set
|
|
* bits in the range to zero. So these bit will not be excluded. */
|
|
if (first_byte_neg_mask != 0) firstlast[0] = p[start] & first_byte_neg_mask;
|
|
if (last_byte_neg_mask != 0) firstlast[1] = p[end] & last_byte_neg_mask;
|
|
count -= redisPopcount(firstlast,2);
|
|
}
|
|
addReplyLongLong(c,count);
|
|
}
|
|
}
|
|
|
|
/* BITPOS key bit [start [end [BIT|BYTE]]] */
|
|
void bitposCommand(client *c) {
|
|
robj *o;
|
|
long long start, end;
|
|
long bit, strlen;
|
|
unsigned char *p;
|
|
char llbuf[LONG_STR_SIZE];
|
|
int isbit = 0, end_given = 0;
|
|
unsigned char first_byte_neg_mask = 0, last_byte_neg_mask = 0;
|
|
|
|
/* Parse the bit argument to understand what we are looking for, set
|
|
* or clear bits. */
|
|
if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK)
|
|
return;
|
|
if (bit != 0 && bit != 1) {
|
|
addReplyError(c, "The bit argument must be 1 or 0.");
|
|
return;
|
|
}
|
|
|
|
/* Parse start/end range if any. */
|
|
if (c->argc == 4 || c->argc == 5 || c->argc == 6) {
|
|
if (getLongLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK)
|
|
return;
|
|
if (c->argc == 6) {
|
|
if (!strcasecmp(c->argv[5]->ptr,"bit")) isbit = 1;
|
|
else if (!strcasecmp(c->argv[5]->ptr,"byte")) isbit = 0;
|
|
else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
}
|
|
if (c->argc >= 5) {
|
|
if (getLongLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK)
|
|
return;
|
|
end_given = 1;
|
|
}
|
|
|
|
/* Lookup, check for type. */
|
|
o = lookupKeyRead(c->db, c->argv[1]);
|
|
if (checkType(c, o, OBJ_STRING)) return;
|
|
p = getObjectReadOnlyString(o, &strlen, llbuf);
|
|
|
|
/* Make sure we will not overflow */
|
|
long long totlen = strlen;
|
|
serverAssert(totlen <= LLONG_MAX >> 3);
|
|
|
|
if (c->argc < 5) {
|
|
if (isbit) end = (totlen<<3) + 7;
|
|
else end = totlen-1;
|
|
}
|
|
|
|
if (isbit) totlen <<= 3;
|
|
/* Convert negative indexes */
|
|
if (start < 0) start = totlen+start;
|
|
if (end < 0) end = totlen+end;
|
|
if (start < 0) start = 0;
|
|
if (end < 0) end = 0;
|
|
if (end >= totlen) end = totlen-1;
|
|
if (isbit && start <= end) {
|
|
/* Before converting bit offset to byte offset, create negative masks
|
|
* for the edges. */
|
|
first_byte_neg_mask = ~((1<<(8-(start&7)))-1) & 0xFF;
|
|
last_byte_neg_mask = (1<<(7-(end&7)))-1;
|
|
start >>= 3;
|
|
end >>= 3;
|
|
}
|
|
} else if (c->argc == 3) {
|
|
/* Lookup, check for type. */
|
|
o = lookupKeyRead(c->db, c->argv[1]);
|
|
if (checkType(c,o,OBJ_STRING)) return;
|
|
p = getObjectReadOnlyString(o,&strlen,llbuf);
|
|
|
|
/* The whole string. */
|
|
start = 0;
|
|
end = strlen-1;
|
|
} else {
|
|
/* Syntax error. */
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
return;
|
|
}
|
|
|
|
/* If the key does not exist, from our point of view it is an infinite
|
|
* array of 0 bits. If the user is looking for the first clear bit return 0,
|
|
* If the user is looking for the first set bit, return -1. */
|
|
if (o == NULL) {
|
|
addReplyLongLong(c, bit ? -1 : 0);
|
|
return;
|
|
}
|
|
|
|
/* For empty ranges (start > end) we return -1 as an empty range does
|
|
* not contain a 0 nor a 1. */
|
|
if (start > end) {
|
|
addReplyLongLong(c, -1);
|
|
} else {
|
|
long bytes = end-start+1;
|
|
long long pos;
|
|
unsigned char tmpchar;
|
|
if (first_byte_neg_mask) {
|
|
if (bit) tmpchar = p[start] & ~first_byte_neg_mask;
|
|
else tmpchar = p[start] | first_byte_neg_mask;
|
|
/* Special case, there is only one byte */
|
|
if (last_byte_neg_mask && bytes == 1) {
|
|
if (bit) tmpchar = tmpchar & ~last_byte_neg_mask;
|
|
else tmpchar = tmpchar | last_byte_neg_mask;
|
|
}
|
|
pos = redisBitpos(&tmpchar,1,bit);
|
|
/* If there are no more bytes or we get valid pos, we can exit early */
|
|
if (bytes == 1 || (pos != -1 && pos != 8)) goto result;
|
|
start++;
|
|
bytes--;
|
|
}
|
|
/* If the last byte has not bits in the range, we should exclude it */
|
|
long curbytes = bytes - (last_byte_neg_mask ? 1 : 0);
|
|
if (curbytes > 0) {
|
|
pos = redisBitpos(p+start,curbytes,bit);
|
|
/* If there is no more bytes or we get valid pos, we can exit early */
|
|
if (bytes == curbytes || (pos != -1 && pos != (long long)curbytes<<3)) goto result;
|
|
start += curbytes;
|
|
bytes -= curbytes;
|
|
}
|
|
if (bit) tmpchar = p[end] & ~last_byte_neg_mask;
|
|
else tmpchar = p[end] | last_byte_neg_mask;
|
|
pos = redisBitpos(&tmpchar,1,bit);
|
|
|
|
result:
|
|
/* If we are looking for clear bits, and the user specified an exact
|
|
* range with start-end, we can't consider the right of the range as
|
|
* zero padded (as we do when no explicit end is given).
|
|
*
|
|
* So if redisBitpos() returns the first bit outside the range,
|
|
* we return -1 to the caller, to mean, in the specified range there
|
|
* is not a single "0" bit. */
|
|
if (end_given && bit == 0 && pos == (long long)bytes<<3) {
|
|
addReplyLongLong(c,-1);
|
|
return;
|
|
}
|
|
if (pos != -1) pos += (long long)start<<3; /* Adjust for the bytes we skipped. */
|
|
addReplyLongLong(c,pos);
|
|
}
|
|
}
|
|
|
|
/* BITFIELD key subcommand-1 arg ... subcommand-2 arg ... subcommand-N ...
|
|
*
|
|
* Supported subcommands:
|
|
*
|
|
* GET <type> <offset>
|
|
* SET <type> <offset> <value>
|
|
* INCRBY <type> <offset> <increment>
|
|
* OVERFLOW [WRAP|SAT|FAIL]
|
|
*/
|
|
|
|
#define BITFIELD_FLAG_NONE 0
|
|
#define BITFIELD_FLAG_READONLY (1<<0)
|
|
|
|
struct bitfieldOp {
|
|
uint64_t offset; /* Bitfield offset. */
|
|
int64_t i64; /* Increment amount (INCRBY) or SET value */
|
|
int opcode; /* Operation id. */
|
|
int owtype; /* Overflow type to use. */
|
|
int bits; /* Integer bitfield bits width. */
|
|
int sign; /* True if signed, otherwise unsigned op. */
|
|
};
|
|
|
|
/* This implements both the BITFIELD command and the BITFIELD_RO command
|
|
* when flags is set to BITFIELD_FLAG_READONLY: in this case only the
|
|
* GET subcommand is allowed, other subcommands will return an error. */
|
|
void bitfieldGeneric(client *c, int flags) {
|
|
robj *o;
|
|
uint64_t bitoffset;
|
|
int j, numops = 0, changes = 0;
|
|
size_t strOldSize, strGrowSize = 0;
|
|
struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */
|
|
int owtype = BFOVERFLOW_WRAP; /* Overflow type. */
|
|
int readonly = 1;
|
|
uint64_t highest_write_offset = 0;
|
|
|
|
for (j = 2; j < c->argc; j++) {
|
|
int remargs = c->argc-j-1; /* Remaining args other than current. */
|
|
char *subcmd = c->argv[j]->ptr; /* Current command name. */
|
|
int opcode; /* Current operation code. */
|
|
long long i64 = 0; /* Signed SET value. */
|
|
int sign = 0; /* Signed or unsigned type? */
|
|
int bits = 0; /* Bitfield width in bits. */
|
|
|
|
if (!strcasecmp(subcmd,"get") && remargs >= 2)
|
|
opcode = BITFIELDOP_GET;
|
|
else if (!strcasecmp(subcmd,"set") && remargs >= 3)
|
|
opcode = BITFIELDOP_SET;
|
|
else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
|
|
opcode = BITFIELDOP_INCRBY;
|
|
else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
|
|
char *owtypename = c->argv[j+1]->ptr;
|
|
j++;
|
|
if (!strcasecmp(owtypename,"wrap"))
|
|
owtype = BFOVERFLOW_WRAP;
|
|
else if (!strcasecmp(owtypename,"sat"))
|
|
owtype = BFOVERFLOW_SAT;
|
|
else if (!strcasecmp(owtypename,"fail"))
|
|
owtype = BFOVERFLOW_FAIL;
|
|
else {
|
|
addReplyError(c,"Invalid OVERFLOW type specified");
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
continue;
|
|
} else {
|
|
addReplyErrorObject(c,shared.syntaxerr);
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
|
|
/* Get the type and offset arguments, common to all the ops. */
|
|
if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) {
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
|
|
if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
|
|
if (opcode != BITFIELDOP_GET) {
|
|
readonly = 0;
|
|
if (highest_write_offset < bitoffset + bits - 1)
|
|
highest_write_offset = bitoffset + bits - 1;
|
|
/* INCRBY and SET require another argument. */
|
|
if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Populate the array of operations we'll process. */
|
|
ops = zrealloc(ops,sizeof(*ops)*(numops+1));
|
|
ops[numops].offset = bitoffset;
|
|
ops[numops].i64 = i64;
|
|
ops[numops].opcode = opcode;
|
|
ops[numops].owtype = owtype;
|
|
ops[numops].bits = bits;
|
|
ops[numops].sign = sign;
|
|
numops++;
|
|
|
|
j += 3 - (opcode == BITFIELDOP_GET);
|
|
}
|
|
|
|
if (readonly) {
|
|
/* Lookup for read is ok if key doesn't exit, but errors
|
|
* if it's not a string. */
|
|
o = lookupKeyRead(c->db,c->argv[1]);
|
|
if (o != NULL && checkType(c,o,OBJ_STRING)) {
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
} else {
|
|
if (flags & BITFIELD_FLAG_READONLY) {
|
|
zfree(ops);
|
|
addReplyError(c, "BITFIELD_RO only supports the GET subcommand");
|
|
return;
|
|
}
|
|
|
|
/* Lookup by making room up to the farthest bit reached by
|
|
* this operation. */
|
|
if ((o = lookupStringForBitCommand(c,
|
|
highest_write_offset,&strOldSize,&strGrowSize)) == NULL) {
|
|
zfree(ops);
|
|
return;
|
|
}
|
|
}
|
|
|
|
addReplyArrayLen(c,numops);
|
|
|
|
/* Actually process the operations. */
|
|
for (j = 0; j < numops; j++) {
|
|
struct bitfieldOp *thisop = ops+j;
|
|
|
|
/* Execute the operation. */
|
|
if (thisop->opcode == BITFIELDOP_SET ||
|
|
thisop->opcode == BITFIELDOP_INCRBY)
|
|
{
|
|
/* SET and INCRBY: We handle both with the same code path
|
|
* for simplicity. SET return value is the previous value so
|
|
* we need fetch & store as well. */
|
|
|
|
/* We need two different but very similar code paths for signed
|
|
* and unsigned operations, since the set of functions to get/set
|
|
* the integers and the used variables types are different. */
|
|
if (thisop->sign) {
|
|
int64_t oldval, newval, wrapped, retval;
|
|
int overflow;
|
|
|
|
oldval = getSignedBitfield(o->ptr,thisop->offset,
|
|
thisop->bits);
|
|
|
|
if (thisop->opcode == BITFIELDOP_INCRBY) {
|
|
overflow = checkSignedBitfieldOverflow(oldval,
|
|
thisop->i64,thisop->bits,thisop->owtype,&wrapped);
|
|
newval = overflow ? wrapped : oldval + thisop->i64;
|
|
retval = newval;
|
|
} else {
|
|
newval = thisop->i64;
|
|
overflow = checkSignedBitfieldOverflow(newval,
|
|
0,thisop->bits,thisop->owtype,&wrapped);
|
|
if (overflow) newval = wrapped;
|
|
retval = oldval;
|
|
}
|
|
|
|
/* On overflow of type is "FAIL", don't write and return
|
|
* NULL to signal the condition. */
|
|
if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
|
|
addReplyLongLong(c,retval);
|
|
setSignedBitfield(o->ptr,thisop->offset,
|
|
thisop->bits,newval);
|
|
|
|
if (strGrowSize || (oldval != newval))
|
|
changes++;
|
|
} else {
|
|
addReplyNull(c);
|
|
}
|
|
} else {
|
|
/* Initialization of 'wrapped' is required to avoid
|
|
* false-positive warning "-Wmaybe-uninitialized" */
|
|
uint64_t oldval, newval, retval, wrapped = 0;
|
|
int overflow;
|
|
|
|
oldval = getUnsignedBitfield(o->ptr,thisop->offset,
|
|
thisop->bits);
|
|
|
|
if (thisop->opcode == BITFIELDOP_INCRBY) {
|
|
newval = oldval + thisop->i64;
|
|
overflow = checkUnsignedBitfieldOverflow(oldval,
|
|
thisop->i64,thisop->bits,thisop->owtype,&wrapped);
|
|
if (overflow) newval = wrapped;
|
|
retval = newval;
|
|
} else {
|
|
newval = thisop->i64;
|
|
overflow = checkUnsignedBitfieldOverflow(newval,
|
|
0,thisop->bits,thisop->owtype,&wrapped);
|
|
if (overflow) newval = wrapped;
|
|
retval = oldval;
|
|
}
|
|
/* On overflow of type is "FAIL", don't write and return
|
|
* NULL to signal the condition. */
|
|
if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
|
|
addReplyLongLong(c,retval);
|
|
setUnsignedBitfield(o->ptr,thisop->offset,
|
|
thisop->bits,newval);
|
|
|
|
if (strGrowSize || (oldval != newval))
|
|
changes++;
|
|
} else {
|
|
addReplyNull(c);
|
|
}
|
|
}
|
|
} else {
|
|
/* GET */
|
|
unsigned char buf[9];
|
|
long strlen = 0;
|
|
unsigned char *src = NULL;
|
|
char llbuf[LONG_STR_SIZE];
|
|
|
|
if (o != NULL)
|
|
src = getObjectReadOnlyString(o,&strlen,llbuf);
|
|
|
|
/* For GET we use a trick: before executing the operation
|
|
* copy up to 9 bytes to a local buffer, so that we can easily
|
|
* execute up to 64 bit operations that are at actual string
|
|
* object boundaries. */
|
|
memset(buf,0,9);
|
|
int i;
|
|
uint64_t byte = thisop->offset >> 3;
|
|
for (i = 0; i < 9; i++) {
|
|
if (src == NULL || i+byte >= (uint64_t)strlen) break;
|
|
buf[i] = src[i+byte];
|
|
}
|
|
|
|
/* Now operate on the copied buffer which is guaranteed
|
|
* to be zero-padded. */
|
|
if (thisop->sign) {
|
|
int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8),
|
|
thisop->bits);
|
|
addReplyLongLong(c,val);
|
|
} else {
|
|
uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8),
|
|
thisop->bits);
|
|
addReplyLongLong(c,val);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (changes) {
|
|
|
|
/* If this is not a new key (old size not 0) and size changed, then
|
|
* update the keysizes histogram. Otherwise, the histogram already
|
|
* updated in lookupStringForBitCommand() by calling dbAdd(). */
|
|
if ((strOldSize > 0) && (strGrowSize != 0))
|
|
updateKeysizesHist(c->db, getKeySlot(c->argv[1]->ptr), OBJ_STRING,
|
|
strOldSize, strOldSize + strGrowSize);
|
|
|
|
signalModifiedKey(c,c->db,c->argv[1]);
|
|
notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
|
|
server.dirty += changes;
|
|
}
|
|
zfree(ops);
|
|
}
|
|
|
|
void bitfieldCommand(client *c) {
|
|
bitfieldGeneric(c, BITFIELD_FLAG_NONE);
|
|
}
|
|
|
|
void bitfieldroCommand(client *c) {
|
|
bitfieldGeneric(c, BITFIELD_FLAG_READONLY);
|
|
}
|